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Preface 

Mortality projections are an essential input for projections of the financial devel-
opment of pension schemes. Governments and insurance companies all over the 
world rely on good mortality projections for efficient administration of their 
pension commitments. Ideally, the expected value of the difference between 
outcomes and projections would be close to zero. In practice, during recent dec-
ades, demographers have continually underestimated improvements in life ex-
pectancy for persons 60 and older. The demographic models used in projecting 
mortality are usually based on statistical modeling of historical data. The ques-
tion is, is it possible to bring the results of mortality modeling closer to the ideal, 
and if so, what do demographers need to do to achieve this result?  

This is the question that provided the impetus for forming the Stockholm Com-
mittee on Mortality Forecasting. The Swedish Social Insurance Agency (for-
merly National Social Insurance Board, RFV) is the national agency in Sweden 
responsible for providing a financial picture of Sweden’s public pension system. 
The Swedish Social Insurance Agency has a long-standing interest in the devel-
opment of modeling of pension schemes and participates actively in the interna-
tional dialogue among experts in this area. The Stockholm Committee on Mortal-
ity Forecasting was created by RFV to bring together scholars from different 
disciplines working on issues in projecting mortality. The aim of the Committee 
is to survey the state of the art and to provide an impetus for the advancement of 
knowledge and better practice in forecasting mortality. 

This is the second volume in a series presenting papers from workshops on mor-
tality organized by the Stockholm Committee on Mortality Forecasting. The 
chapters focus on probabilistic (also labeled as stochastic) forecasts, in other 
words forecasts in which uncertainty has been quantified. Given a history of 
sizable forecasting errors, the first paper, by Nico Keilman, addresses the ques-
tion of why demographic forecasts are uncertain. In the second paper Juha Alho 
outlines the statistical background of uncertain events and forecasts of these. In 
the third paper Maarten Alders and Joop de Beer sketch the approach taken by 
Statistics Netherlands in their stochastic forecast of mortality, while in the fourth 
paper Shripad Tuljapurkar presents a model for mortality analysis and forecast-
ing that has proven to be feasible for probabilistic forecasts. He gives illustra-
tions of US and Swedish mortality, and discusses also possible implications of 
uncertain mortality for future pension expenditures.  

Probabilistic population forecasting is a relatively new development in demogra-
phy and forecasting. The topic is of particular interest for the performance of 
pension systems in the future. As editor of Social Insurance Studies, it is my 
hope that the published proceedings of the Stockholm Committee on Mortality 
Forecasting will contribute to improve our understanding of the processes under-
lying increasing longevity.  

Edward Palmer 
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7 

Erroneous Population Forecasts 

Nico Keilman 
Professor of Demography, Department of Economics at University of Oslo, 
Norway 

1 Forecast accuracy 
World population in the year 2000 was 6.09 billion, according to recent esti-
mates by the United Nations (UN 2005). This number is almost 410 million 
lower than the year 2000-estimate that the UN expected in 1973. The UN has 
computed forecasts for the population of the world since the 1950s. Figure 1 
shows that the calculations made in the 1980s were much closer to the current 
estimate than those published around 1990. Subsequent forecasts for the 
world population in 2000 show an irregular pattern: apparently, in 1973 and 
around 1990 it was rather difficult to predict world population size and much 
less so in the mid-1980s. 

Figure 1. Zooming in on the Year 2000 - World population 
at the end of the 20th Century
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At first sight, the relative differences in Figure 1 appear small. The highest 
forecast came out in 1973. That forecast numbered 6.49 billion, only six per 
cent higher than the current estimate of 6.09 billion. However, the difference 
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is much larger in terms of population growth. The 1973 forecast covered the 
period 1965–2000. During those 35 years, a growth in world population by 
3.20 billion was foreseen. According to the current estimate, the growth was 
16 per cent lower: only 2.7 billion persons. 

An important reason for lower population growth is that the world’s birth 
rates fell stronger than previously thought. Thirty years ago, the UN expected 
a drop in total fertility by 1.4 children between the periods 1965–1970 and 
1995–2000: from 4.7 to 3.3 children per woman on average. Recent estimates 
indicate that fertility initially was higher than previously thought, and that it 
fell steeper than expected in that thirty-year period, from 4.9 to 2.8. 

Accuracy statistics of the type given here are important indicators when judg-
ing the quality of population forecasts. Other aspects, such as the information 
content (for instance, does the forecast predict only total population, or also 
age groups?) and the usefulness for policy purposes (for instance, does the 
predicted trend imply immediate policy measures?) are relevant as well. Nev-
ertheless, the degree to which the forecast reflects real trends is a key factor 
in assessing its quality, in particular when the forecast is used for planning 
purposes. For example, imagine a forecast, for which the odds are one against 
two that it will cover actual trends. This forecast should be handled much 
more cautiously than one that can be expected to be in error only one out of 
five times. 

The purpose of this chapter is to give a broad review of the notions of popula-
tion forecast errors and forecast accuracy. Why are population forecasts inac-
curate? How large are the errors involved, when we analyse historical fore-
casts of fertility, mortality, and the age structure? Moreover, how can we 
compute expected errors in recent forecasts? We shall see that probabilistic 
population forecasts are necessary to assess the expected accuracy of a fore-
cast, and that such probabilistic forecasts quantify expected accuracy and 
expected forecast errors much better than traditional deterministic forecasts 
do. The chapter concludes with some challenges in the field of probabilistic 
population forecasting. 

The focus in this chapter is on population forecasts at the national level, 
computed by means of the cohort component method. I have largely re-
stricted myself to national forecasts, because most of the empirical literature 
on forecast errors and forecast accuracy deals with forecasts at that level. 
Notable exceptions, to be discussed below, are analyses for major world re-
gions by Lutz et al. (1996, 2001), and for all countries in the world by the US 
National Research Council (NRC 2000). The empirical accuracy of sub-
national population forecasts has been evaluated since the 1950s (Smith et al. 
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2001), but the expected accuracy of such forecasts is largely uncharted ter-
rain, cf. the concluding section. I focus on the cohort component method of 
population forecasting, because this method is the standard approach for 
population forecasting at the national level (Keilman and Cruijsen 1992). 
Most of the empirical evidence stems from industrialized countries, although 
findings for less-developed countries will be mentioned occasionally. 

Various terms are in use to express accuracy, and lack thereof. I shall use 
inaccuracy and uncertainty as equivalent notions. When a forecast is accu-
rate, its errors are small. Forecast errors are a means of quantifying forecast 
accuracy and forecast uncertainty. Empirical errors may be computed based 
on a historical forecast, when its results are compared with actual population 
data observed some years after the forecast was computed. For a recent fore-
cast, this is not possible. In that case, one may compute expected errors, by 
means of a statistical model. 

2 Why population forecasts are inaccurate 
Population forecasts are inaccurate because our understanding of demo-
graphic behaviour is imperfect. Keyfitz (1982) assessed various established 
and rudimentary demographic theories: demographic transition, effects of 
development, Caldwell’s theory concerning education and fertility, urbaniza-
tion, income distribution, Malthus’ writings on population, human capital, the 
Easterlin effect, opportunity costs, prosperity and fertility, and childbearing 
intentions. He tried to discover whether these theories had improved demo-
graphic forecasting, but his conclusion was negative. Although many of the 
theories are extensively tested, they have limited predictive validity in space 
and time, are strongly conditional, or cannot be applied without the difficult 
prediction of non-demographic factors. Keyfitz’ conclusion agrees with 
Ernest Nagel’s opinion from 1961, that “… (un)like the laws of physics and 
chemistry, generalizations in the social sciences … have at best only a se-
verely restricted scope, limited to social phenomena occurring during a rela-
tively brief historical epoch with special institutional settings.” Similarly, 
Raymond Boudon (1986) concluded that general social science theories do 
not exist – they are all partial and local, and Louis Henry (1987) supports that 
view for the case of demography. Applied to demographic forecasting, this 
view implies that uncertainty is inherent, and not merely the result of our 
ignorance. Individuals make unpredictable choices regarding partnership and 
childbearing, health behaviour, and migration. Note that the views expressed 
by Nagel and Boudon are radically different from Laplace’s view on chance 
and uncertainty: “Imagine … an intelligence which could comprehend all the 
forces by which nature is animated … To it nothing would be uncertain, and 
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the future, as the past, would be present to its eyes. “ (Laplace 1812–1820). 
This view suggests that our ignorance is temporary, and good research into 
human behaviour will increase our understanding and help formulating accu-
rate forecasts. 

Whichever view is correct, demographic behaviour is not well explained as 
of today. When explanation is problematic, forecasting is even more difficult. 
Therefore, in addition to whatever fragmentary insight demographers obtain 
from behavioural sciences, they rely heavily on current real trends in vital 
processes, and they extrapolate those trends into the future. Hence, they face 
a problem when the indicators show unexpected changes in level or slope. It 
will not be clear whether these are caused by random fluctuations, or whether 
there is a structural change in the underlying trends. A trend shift that is per-
ceived as random will first lead to large forecast errors. This effect is known 
in forecasting literature as assumption drag (Ascher 1978). Later, when the 
new trend is acknowledged, it will be included in the forecast updates and the 
errors will diminish. On the other hand, random fluctuations that are per-
ceived as a trend shift will cause forecast errors, which will have a fluctuating 
effect on subsequent forecasts. 

3 Empirical evidence from historical forecasts 
There is a large literature, in which historical population forecasts are evalu-
ated against observed statistics (Preston 1974; Calot and Chesnais 1978; 
Inoue and Yu 1979; Keyfitz 1981; Stoto 1983; 1987; Pflaumer 1988; Keil-
man 1997, 1998, 2000, 2001; Keilman and Pham 2004; National Research 
Council 2000). These studies have shown, among others, that forecast accu-
racy is better for short than for long forecast durations, and that it is better for 
large than for small populations. They also learned us that forecasts of the old 
and the young tend to be less accurate than those of intermediate age groups, 
and that there are considerable differences in accuracy between regions and 
components. Finally, poor data quality tends to go together with poor forecast 
performance. This relationship is stronger for mortality than for fertility, and 
stronger for short-term than for long-term forecasts. Selected examples of 
these general findings will be given below. 

3.1 Forecasts are more accurate for short than for long 
forecast durations 

Duration dependence of forecast accuracy is explained by the fact that the 
more years a forecast covers, the greater is the chance that unforeseen devel-
opments will produce unexpected changes in fertility, mortality, or migration. 
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The US National Research Council (NRC) evaluated the accuracy of nine 
total population size forecasts for countries of the world. Four of these were 
published by the United Nations (between 1973 and 1994), four by the World 
Bank (between 1972 and 1990), and one by the US Census Bureau (1987). 
The absolute percentage error, that is the forecast error irrespective of sign, 
increased from 5 per cent on average for five-year ahead forecasts, to 9 per 
cent 15 years ahead, and to 14 per cent 25 years ahead (NRC 2000). The av-
erage was computed over all countries and all forecasts. Developed countries 
had errors that were lower, and increased slower by forecast duration: from 2 
(5 years ahead) to 4–5 (25 years ahead) per cent. A striking feature of these 
errors is that, even at duration zero, i.e., in the forecast’s base year, the errors 
are not negligible. Hence, forecasts start off with an incorrect base line popu-
lation. For countries in Africa and the Middle East this base line error was 
highest: five per cent. Base line errors reflect poor data quality: when the 
forecasts were made, demographers worked with the best data that were 
available, but in retrospect, those data were revised. 

Total fertility showed average errors from 0.4 children per woman after five 
years, to 0.6 and 0.8 children per woman after 15 and 25 years, with higher 
than average errors for European countries. In an evaluation of ten TFR-
forecasts made by the UN since 1965, I found that for Europe as a whole, 
TFR errors were lower, and increased slower: from 0.2 children per woman 
after five years, to 0.5 after 15 years (Keilman 2001). An analysis of the er-
rors observed in TFR forecasts in 14 European countries made since the 
1960s shows that TFR-predictions have been wrong by 0.3 children per 
woman for forecasts 15 years ahead, and 0.4 children per woman 25 years 
ahead (Keilman and Pham 2004). Life expectancy was wrong by 2.3 (five 
years ahead), 3.5 (15 years ahead) and 4.3 (25 years ahead) years on average 
in the NRC evaluation. In 14 European countries, life expectancy forecasts 
tended to be too low by 1.0–1.3 and 3.2–3.4 years at forecast horizons of 10 
and 20 years ahead, respectively. 

3.2 Forecasts are more accurate for large than for small 
populations 

A size effect in empirical errors at the sub national level was established al-
ready fifty years ago (White 1954), and reconfirmed repeatedly (see Smith et 
al. 2001 for an overview). Schéele (1981) found that the absolute error in 
small area forecasts within the Stockholm area was approximately propor-
tional to the square root of population size, i.e., a power of 0.5 (see also Ban-
del Bäckman and Schéele 1995). Later, Tayman et al. (1998) confirmed such 
a power law for small area forecasts in San Diego County, California, when 
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they found that the mean absolute percentage forecast error was proportional 
to population size raised to the power 0.4. 

At the international level, the NRC analysis referred to earlier showed that 
the absolute percentage error in forecasts of total population size was 5.5 per 
cent on average, the average being taken over all countries and all nine fore-
cast rounds. However, for countries with less than one million inhabitants, 
the average was 3 percentage points higher; for countries with a population 
of at least one million, the error was 0.7 percentage points lower (controlling, 
among others, for forecast length, year forecasted, forecast round, and 
whether or not the country had had a recent census; see NRC 2000, Appendix 
Table B7). 

There are three reasons for the size effect in forecast accuracy. First, at the 
international scale, forecasters tend to pay less attention to the smallest coun-
tries, and take special care with the largest ones (NRC 2000). Second, both at 
the international and the local scale, small countries and areas are stronger 
affected by random fluctuations than large ones. In fact, many errors at the 
lower regional level cancel after aggregation. This explains irregular patterns 
and randomness in historical series of vital statistics at the lower level, lead-
ing to unexpected real developments after the forecast was produced. Third, 
for small areas the impact of migration on total population is strong com-
pared to fertility and mortality, while, at the same time, migration is the least 
predictable of the three components. 

3.3 Forecasts of the old and the young tend to be less accurate 
than those of intermediate age groups 

In medium sized and large countries and regions, international migration has 
much less effect on the age structure than fertility or mortality. Therefore, a 
typical age pattern is often observed for accuracy. For many developed coun-
tries, a plot of relative forecast errors against age reveals large and positive 
errors (i.e., too high forecasts) for young age groups, and large negative er-
rors (too low forecasts) for the elderly. Errors for intermediate age groups are 
small. This age effect in forecast accuracy has been established for Europe, 
Northern America, and Latin America, and for countries such as Canada, 
Denmark, the Netherlands, Norway, and the United Kingdom (Keilman 
1997, 1998). The fall in birth rates in the 1970s came fully unexpected for 
many demographers, which led to too high forecasts for young age groups. 
At the same time, mortality forecasts were often too pessimistic, in particular 
for women – hence the forecasts predicted too few elderly. The relative errors 
for the oldest old are often of the same order of magnitude as those for the 
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youngest age groups: plus or minus 15 per cent or more for forecasts 15 years 
into the future. 

3.4 Accuracy differs between components and regions 
In an analysis of the accuracy of 16 sets of population projections that the UN 
published between 1951 and 1998, I found considerable variation among ten 
large countries and seven major regions (Keilman 2001). Problems are largest 
in pre-transition countries, in particular in Asia. The quality of UN data for 
total fertility and the life expectancy has been problematic in the past for 
China, Pakistan, and Bangladesh. The poor data quality for these countries 
went together with large errors in projected total fertility and life expectancy. 
For Africa as a whole, data on total population and age structure have been 
revised substantially in the past, and this is a likely reason for the poor per-
formance of the projections in that region. Nigeria, the only African country 
in my analysis, underwent major revisions in its data in connection with the 
Census of 1991. In turn, historical estimates of fertility and mortality indica-
tors had to be adjusted, and this explains large projection errors in the age 
structure, in total fertility and in the life expectancy for this country. The 
problematic data situation for the former USSR is well known, in particular 
that for mortality data. The result was that, on average, life expectancy pro-
jections were too high by 2.9 years, which in turn caused large errors in pro-
jected age structures for the elderly. For Europe and Northern America, data 
quality is generally good. Yet, as noted in Section 3.3, the two regions have 
large errors in long-range projections of their age structures, caused by un-
foreseen trend shifts in fertility and mortality in the 1960s and 1970s. 

The analysis of the statistical distribution of observed forecast errors for 14 
European countries showed that a normal distribution fitted well for errors in 
life expectancies (Keilman and Pham 2004): TFR-errors, on the other hand, 
were exponentially distributed. This indicates that the probability for ex-
tremely large error values was greater for the TFR than for the life expec-
tancy. Extreme errors for net migration are even more likely. 

4 The expected accuracy of current forecasts 
Forecast users should be informed about the expected accuracy of the num-
bers they work with. It focuses their attention on alternative population fu-
tures that may have different implications, and it requires them to decide 
what forecast horizon to take seriously. Just because a forecast covers 100 
years does not mean that one should necessarily use that long a forecast 
(NRC 2000). In that sense, empirical errors observed in a series of historical 
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forecasts for a certain country can give strong indications of the accuracy of 
the nation’s current forecast. However, these historical errors are just one 
realization of a statistical process, which applied to the past. Expected errors 
for the current forecast can only be assessed when the population forecast is 
couched in probabilistic form. 

A probabilistic population forecast of the cohort component type requires the 
joint statistical distribution of all of its input parameters. Because there are 
hundreds of input parameters, one simplifies the probabilistic model in two 
ways. First, one focuses on just a few key parameters (for instance, total fer-
tility, life expectancy, net immigration).1 Second, one ignores certain correla-
tions, for instance those between components, and sometimes also those in 
the age patterns of fertility, mortality, or migration.2 

In probabilistic forecasts, an important type of correlation is that across time 
(serial correlation). Levels of fertility and mortality change only slowly over 
time. Thus, when fertility or mortality is high one year, a high level the next 
year is also likely, but not 100 per cent certain. This implies a strong, but not 
perfect serial correlation for these two components. International migration is 
much more volatile, but economic, legal, political, and social conditions 
stretching over several years affect migration flows to a certain extent, and 
some degree of serial correlation should be expected. In the probabilistic 
forecasts for the United States (Lee and Tuljapurkar 1994), Finland (Alho 
1998), the Netherlands (De Beer and Alders 1999), and Norway (Keilman et 
al. 2001, 2002) these correlation patterns were estimated based on time series 
models. For Austria (Hanika et al. 1997) and for large world regions (Lutz 
and Scherbov 1998a, 1998b) perfect autocorrelation was assumed for the 
summary parameters (total fertility, life expectancy, and net migration). This 

                                                      

1 A cohort component forecast that has one-year age groups requires 35 fertility 
rates, 200 death rates, and some 140 parameters for net migration for each 
forecast year. With age groups and time intervals equal to five years, a forecast for 
a period of fifty years, say, still requires that one specify the joint statistical 
distribution of (7+40+28)*10=750 parameters. 

2 For Western countries, there is little or no reason to assume correlation between 
the components of fertility, mortality, and migration. Nor is there any empirical 
evidence of such correlation (Lee and Tuljapurkar 1994; Keilman 1997). In 
developing countries, disasters and catastrophes may have an impact both on 
mortality, fertility, and migration, and a correlation between the three components 
cannot be excluded. There may also be a positive correlation between the levels of 
immigration and childbearing in Western countries with extremely high 
immigration from developing countries. 
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assumption underestimates uncertainty (Lee 1999). In recent work for world 
regions, Lutz, Sanderson, and Scherbov relaxed the assumption of perfect 
autocorrelation (Lutz et al. 2001). 

Three main methods are in use for computing probabilistic forecasts of the 
summary indicators: time series extrapolation, expert judgement, and ex-
trapolation of historical forecast errors (Lee 1999; NRC 2000). The three 
approaches are complementary, and elements of all three are often combined. 
Time series methods and expert judgement result in the distribution of the 
parameter in question around its expected value. In contrast, an extrapolation 
of empirical errors gives the distribution centred around zero (assuming an 
expected error equal to zero), and the expected value of the population vari-
able is taken from a deterministic forecast computed in the traditional man-
ner. 

Time series methods are based on the assumption that historical values of the 
variable of interest have been generated by means of a statistical model, 
which also holds for the future. A widely used method is that of Autoregres-
sive Integrated Moving Average (ARIMA)-models. These time series models 
were developed for short horizons. When applied to long-run population 
forecasting, the point forecast and the prediction intervals may become unre-
alistic (Sanderson 1995). Judgmental methods (see below) can be applied to 
correct or constrain such unreasonable predictions (Lee 1993; Tuljapurkar 
1996). 

Expert judgement can be used when expected values and corresponding pre-
diction intervals are hard to obtain by formal methods. In demographic fore-
casting, the method has been pioneered by Lutz and colleagues (Lutz et al. 
1996; Hanika et al. 1997; Lutz and Scherbov 1998a, 1998b). A group of ex-
perts is asked to indicate the probability that a summary parameter, such as 
the TFR, falls within a certain pre-specified range for some target year, for 
instance the range determined by the high and the low variant of an inde-
pendently prepared population forecast. The subjective probability distribu-
tions obtained this way from a number of experts are combined in order to 
reduce individual bias. A major weakness of this approach, at least based 
upon the experiences from other disciplines, is that experts often are too con-
fident, i.e., that they tend to attach a too high probability to a given interval 
(Armstrong 1985). A second problem is that an expert would have problems 
with sensibly guessing whether a certain interval corresponds to probability 
bounds with 90 per cent coverage versus 95 per cent or 99 per cent (Lee 
1999). 
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Extrapolation of empirical errors requires observed errors from historical 
forecasts. Formal or informal methods may be used to predict the errors for 
the current forecast. Keyfitz (1981) and Stoto (1983) were among the first to 
use this approach in demographic forecasting. They assessed the accuracy of 
historical forecasts for population growth rates. The Panel on Population 
Projections of the US National Research Council (NRC 2000) elaborated 
further on this idea and developed a statistical model for the uncertainty 
around total population in UN-forecasts for all countries of the world. Others 
have investigated and modelled the accuracy of predicted TFR, life expec-
tancy, immigration levels, and age structures (Keilman 1997; De Beer 1997). 
There are two important problems. First, time series of historical errors are 
usually rather short, as forecasts prepared in the 1960s or earlier generally 
were poorly documented. Second, extrapolation is often difficult because 
errors may have diminished over successive forecast rounds as a result of 
better forecasting methods. 

Irrespective of the method that is used to determine the prediction intervals 
for all future fertility, mortality and migration parameters, the next step is to 
apply these to the base population in order to compute prediction intervals for 
future population size and age pyramids. This can be done in two ways: ana-
lytically, and by means of simulation. 

The analytical approach is based on a stochastic cohort component model, in 
which the statistical distributions for the fertility, mortality, and migration 
parameters are transformed into statistical distributions for the size of the 
population and its age-sex structure. Alho and Spencer (1985) and Cohen 
(1986) employ such an analytical approach, but they need strong assump-
tions. Lee and Tuljapurkar (1994) give approximate expressions for the sec-
ond moments of the distributions. 

The simulation approach avoids the simplifying assumptions and the ap-
proximations of the analytical approach. The idea is to compute several hun-
dreds or thousands of forecast variants (“sample paths”) based on input pa-
rameter values for fertility, mortality, and migration that are randomly drawn 
from their respective distributions, and store the results in a database. Early 
contributions based on the idea of simulation are those by Keyfitz (1985), 
Pflaumer (1986, 1988), and Kuijsten (1988). 

In order to illustrate that probabilistic forecasts are useful when uncertainty 
has to be quantified, I shall give an example for the population of Norway. I 
shall compare the results from a probabilistic forecast with those from a tradi-
tional deterministic one, prepared by Statistics Norway. 
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5 Probabilistic forecasts: an alternative to forecast 
variants 

Technical details of the methods used to construct the probabilistic forecast 
are presented elsewhere (Keilman et al. 2001, 2002). Here I shall give a brief 
summary. 

ARIMA time series models were estimated for observed annual values of the 
TFR, the life expectancy for men and women, and total immigration and 
immigration in Norway since the 1950s. Based on these ARIMA models, 
repeated stochastic simulation starting in 1996 yielded 5,000 sample paths for 
each of these summary parameters to the year 2050. The predictive distribu-
tions for the TFR and the life expectancy at birth were checked against corre-
sponding empirical distributions based on historical forecasts published by 
Statistics Norway in the period 1969–1996. The predicted TFR, life expec-
tancy, and gross migration flows were broken down into age specific rates 
and numbers by applying various model schedules: a Gamma model for age 
specific fertility, a Heligman-Pollard model for mortality, and a Rogers-
Castro model for migration. Next, the results of the 5,000 runs of the cohort 
component model for the period up to 2050 were assembled in a data base 
containing the future population of Norway broken down by one-year age 
group, sex, forecast year (1997–2050), and forecast run. For each variable of 
interest, for example the total population in 2030, or the old age dependency 
ratio (OADR) in 2050, one can construct a histogram based on 5,000 simu-
lated values, and read off prediction intervals with any chosen coverage 
probability. 

The results showed odds equal to four against one (80 per cent chance) that 
Norway’s population, now 4.5 million, will number between 4.3 and 5.4 mil-
lion in the year 2025, and 3.7–6.4 million in 2050. Uncertainty was largest 
for the youngest and the oldest age groups, because fertility and mortality are 
hard to predict. As a result, prediction intervals in 2030 for the population 
younger than 20 years of age were so wide, that the forecast was not very 
informative. International migration showed large prediction intervals around 
expected levels, but its impact on the age structure was modest. In 2050, un-
certainty had cumulated so strongly, that intervals were very large for virtu-
ally all age groups, in particular when the intervals are judged in a relative 
sense (compared to the median forecast). 

Figure 2 shows the high and the low bound of the various prediction intervals 
for the old age dependency ratio, defined as the population 67 and over rela-
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tive to that aged 20–66.3 The prediction intervals are those with 95 per cent, 
80 per cent, and 67 per cent coverage. The median of the predictive distribu-
tions is also plotted. The intervals widen rapidly, reflecting that uncertainty 
increases with time. We see that ageing is certain in Norway, at least until 
2040. In that year, the odds are two against one (67 per cent interval) that the 
OADR will be between 0.33 and 0.43, i.e., at least 10 points higher than to-
day’s value of 0.23. The probability of a ratio in 2040 that is lower than to-
day’s is close to zero. 

 
Figure 2. Old age dependency ratio, Norway 
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How do these probabilistic forecast results compare with those obtained by a 
traditional deterministic forecast? Statistics Norway’s most recent population 
forecast contains variants for high population growth and low population 
growth, among others (Statistics Norway 2005). The high population growth 
forecast results from combining a high fertility assumption with a high life 
expectancy assumption (i.e., low mortality) and a high net immigration as-
sumption. Likewise, the low growth variant combines low fertility with low 
life expectancy and low immigration. The forecast predicts a population aged 
67 and over in 2050 between 1,095,000 (low growth) and 1,406,000 (high 
growth). However, the corresponding OADR-values are 0.409 for low popu-
lation growth, and 0.392 for high population growth. Therefore, while there 
is a considerable gap between the absolute numbers of elderly in the two 
                                                      

3 The legal retirement age in Norway is 67. 
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variants, the relative numbers, as a proportion of the population aged 20–66, 
are almost indistinguishable. The interval for the absolute number thus re-
flects uncertainty in some sense, but the OADR-interval for the same variant 
pair suggests almost no uncertainty. On the other hand, the probabilistic fore-
cast results in Figure 2 show a two-thirds OADR-prediction interval in 2050 
that stretches from 0.31 to 0.44.4 

This example illustrates that it is problematic to use forecast variants from 
traditional deterministic forecast methods to express forecast uncertainty. 
First, uncertainty is not quantified. Second, the use of high and low variants 
is inconsistent from a statistical point of view (Lee 1999, Alho 1998). In the 
high variant, fertility is assumed to be high in every year of the forecast pe-
riod. Similarly, when fertility is low in one year, it is 100 per cent certain that 
it will be low in the following years, too. Things are even worse when two or 
more mortality variants are formulated, in addition to the fertility variants, so 
that high/low growth variants result from combining high fertility with high 
life expectancy/low fertility with low life expectancy. In that case, any year 
in which fertility is high, life expectancy is high as well. In other words, one 
assumes perfect correlation between fertility and mortality, in addition to 
perfect serial correlation for each of the two components. Assumptions of this 
kind are unrealistic, and, moreover, they cause inconsistencies: two variants 
that are extreme for one variable need not be extreme for another variable. 

As a further illustration of the use of stochastic population forecasts when 
analyzing pension systems, let me consider the possibility of a flexible re-
tirement age. When workers postpone retirement, they contribute longer to 
the pension fund, and the years they benefit from it become shorter (other 
factors remaining the same). Therefore I analyse the following question: 
which retirement age is necessary in Norway in the future in order to achieve 
a constant OADR (see also Section 4 of the chapter by Tuljapurkar in this 
volume for a similar analysis for the United States)? I will investigate two 
cases. First I assume a constant OADR equal to 0.24, which is the highest 
value observed in the past (around 1990, see Figure 2). Second, I assume an 
OADR equal to 0.18. This is the value in 1967, the year when the Norwegian 
pension system in its current form was introduced. Since the future age struc-

                                                      

4 The median OADR-value of the stochastic forecast in 2050 (0.37) is lower than 
the medium value of Statistics Norway’s forecast for that year (0.395). Life 
expectancy in 2050 rises to 86 years in Statistics Norway’s forecast, but only to 
82.3 years in the median of the stochastic forecast. The latter forecast was 
prepared four years earlier than Statistics Norway’s forecast. 
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ture is uncertain, the retirement age necessary to obtain a constant OADR 
becomes a stochastic variable. Table 1 gives the results. 

Table 1 Prediction intervals for retirement age, Norway 

 Median 67 per cent 
interval 

80 per cent 
interval 

95 per cent 
interval 

 OADR = 0.24    
2010 64.8 64.5–65.2 64.4–65.3 64.1–65.5 
2030 69.2 68.2–70.3 67.9–70.6 67.2–71.3 
2050 71.9 69.4–74.4 68.7–75.1 67.0–76.8 

 OADR = 0.18    
2010 67.6 67.2–68.1 67.1–68.2 66.8–68.5 
2030 72.0 71.0–73.0 70.7–73.3 70.1–74.0 
2050 75.1 72.8–77.2 72.2–77.9 70.7–79.4 
 

The table shows that the retirement age in Norway must increase strongly 
from its current value of 67 years, if the OADR were to remain constant at 
0.24. The median of 71.9 years in 2050 indicates that the rise is almost 5 
years. Yet the uncertainty is large here. In four out of five cases would the 
retirement age in 2050 be between 69 and 75 years. In the short run the situa-
tion is completely different. The age structure of the population of Norway is 
such that the retirement age can decrease to 2010, and yet the ratio of elderly 
to the population in labour force ages could remain constant. This finding is 
almost completely certain. Even the upper bound of the 95 per cent interval 
(65.5) is much lower than today’s retirement age. 

If one would require an OADR as low as the one in 1967, the median age at 
retirement has to increase to no less than 75.1 years in 2050. A higher retire-
ment age is necessary even in the short run: the median in 2010 is 67.6 years, 
and the lower bound to the 80 per cent prediction interval indicates that the 
probability that we may can an increase is about ten per cent or lower, given 
the assumptions made. 
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6 Challenges in probabilistic population forecasting 
A probabilistic forecast extrapolates observed variability in demographic data 
to the future. For a proper assessment of the variability, one needs long series 
with annual data of good quality. The minimum is about fifty years, but a 
longer series is preferable. At the same time, one would ideally have a long 
series of historical forecasts, and estimate empirical distributions of observed 
forecast errors based on the old forecasts. There are very few countries that 
have so good data. Therefore, a major challenge in probabilistic forecasting is 
to prepare such forecasts for countries with poorer data. Two research direc-
tions seem promising. First, when time series analysis cannot be used to 
compute predictive distributions, one has to rely strongly on expert opinion. 
Lutz and colleagues (1996, 2001) have indicated how this can be done in 
practice. An important task here is a systematic elicitation of the experts’ 
opinions, in order to avoid too narrow prediction intervals. Second, in case 
the data from historical forecasts are lacking, one could replace actual fore-
casts by naïve or baseline forecasts (Keyfitz 1981; 1998). Historical forecasts 
often assumed constant (or nearly constant) levels or growth rates for sum-
mary indicators such as the TFR, the life expectancy, or the level of immigra-
tion. Thus we can study how accurate past fertility forecasts would have been 
if they had assumed that the base value had persisted. Similarly, we can com-
pute mortality errors based on an assumption of a linear increase in life ex-
pectancy. Such naïve error estimates would be expected to lead to conserva-
tive, that is, too large variability estimates, in some cases only slightly so but 
in others substantially. 

Most applications of probabilistic forecasting so far focus on one country. 
Very few have a regional or an international perspective. One important ex-
ception is the work by Lutz, Sanderson, and Scherbov (1996, 2001), who 
used a probabilistic cohort component approach for 13 regions of the world5. 
For fertility and mortality, they combined the three methods mentioned in 
section 4 to obtain predictive distributions for summary indicators. An impor-
tant challenge was the probabilistic modelling of interregional migration, 
because migration data show large volatility in the trends, are unreliable, not 
consistent between countries, or often simply lacking. In their 1996 study, 
Lutz and colleagues assumed a matrix of constant annual interregional migra-
tion flows, with the 90 per cent prediction bounds corresponding to certain 
high and low migration gains in each region. In the recent study, net migra-

                                                      

5 Probabilistic forecasts of total population size for all countries of the world have 
been prepared by the Panel on Population Projections (NRC 2000), but these 
forecasts do not give age detail. 
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tion into the regions was modelled as a stochastic vector with a certain auto-
correlation structure. A second challenge was the treatment of interregional 
correlations for fertility, mortality, and migration. Due to the paucity of the 
necessary data, these correlations are difficult to estimate. Therefore, the 
authors combined qualitative considerations with sensitivity analysis, and 
investigated alternative regional correlation levels. 

Because of these data problems, the development of a sound method for 
probabilistic multiregional cohort component forecasting is an important 
research challenge. For sub-national forecasts, the problems are probably 
easier to overcome than for international forecasts, because the data situation 
is better in the former case, at least in a number of developed countries. The 
way ahead would thus be to collect better migration data, and to invest efforts 
in estimating cross-regional correlation patterns for fertility, mortality, and 
migration. An alternative strategy could be to start from a probabilistic cohort 
component forecast for the larger region, and to compute such forecasts at the 
lower regional level (by age and sex) by means of an appropriate multivariate 
distribution with expected values corresponding to the regional shares from 
an independently prepared deterministic forecast. 

Not only regional forecasts, but also other types of population forecasts 
should be couched in probabilistic terms, such as labour market forecasts, 
educational forecasts, and household forecasts, to name a few. Very few of 
such probabilistic forecasts have been prepared. Lee and Tuljapurkar (2001) 
have investigated the expected accuracy of old age security funds forecasts in 
the United States. A major topic of research here is to analyse the relative 
contribution to uncertainty of demographic factors (fertility, mortality, migra-
tion) and non-demographic factors (labour market participation, educational 
attainment, residential choices). 



Perspectives on Mortality Forecasting II – Nico Keilman 

23 

References 
Alho, J. M. (1998) A stochastic forecast of the population of Finland. Reviews 
1998/4. Statistics Finland, Helsinki. 

Alho, J. and B. Spencer (1985) Uncertain population forecasting. Journal of the 
American. Statistical Association 80: 306–314. 

Armstrong, J. (1985) Long-range forecasting: From crystal ball to computer. 
New York: Wiley (2nd ed.). 

Ascher, W. (1978) Forecasting: An appraisal for policy-makers and planner. 
Baltimore: The Johns Hopkins University Press. 

Bandel Bäckman, J. and S. Schéele (1995) Uncertainty in population forecasts 
for small areas. Pp. 419–434 in C. Lundh (ed.) Demography, Economy and 
Welfare. Lund Studies in Economic History 1. Lund: Lund University Press. 

Boudon, R. (1986) Theories of social change: A critical appraisal. Cambridge: 
Polity Press. 

Calot, G. and J.C. Chesnais (1978) La prevision démographique. Dans A.-C. 
Decouflé Traité élémentaire de prevision et de prospective. Paris: PUF. 

Cohen, J. (1986) Population forecasts and confidence intervals for Sweden: A 
comparison of model-based and empirical approaches. Demography 23: 105–
126. 

De Beer, J. (1997) The effect of uncertainty of migration on national population 
forecasts: The case of the Netherlands. Journal of Official Statistics 13: 227–243. 

De Beer, J. and M. Alders (1999) Probabilistic population and household 
forecasts for the Netherlands Working Paper nr. 45, Joint ECE-Eurostat Work 
Session on Demographic Projections, Perugia, Italy, 3–7 May 1999. 

Hanika, A., W. Lutz and S. Scherbov (1997) Ein probabilistischer Ansatz zur 
Bevölkerungs-vorausschätzung für Österreich, Statistische Nachrichten 12/1997: 
984–988. 

Henry, L. (1987) Perspectives et prévision. In: Les projections démographiques. 
Actes du VIIIe Colloque National de Démographie. Tome 1. Paris: Presses 
Universitaires de France (Traveaux et Documents Cahier no. 116). 

Henry, L. and H. Gutierrez (1977) Qualité des prévisions démographiques à 
court terme: Etude de l’extrapolation de la population totale des départements et 
villes de France 1821–1975, Population 32: 625–647. 



Perspectives on Mortality Forecasting II – Nico Keilman 

24 

Inoue, S. and Y.C. Yu (1979) United Nations new population projections and 
analysis of ex post facto errors. Paper Annual Meeting Population Association of 
America, Philadelphia, April 1979. 

Keilman, N. (1997) Ex-post errors in official population forecasts in 
industrialized countries. Journal of Official Statistics 13: 245–277. 

Keilman, N. (1998) How accurate are the United Nations world population 
projections? Population and Development Review Supplement to Volume 24: 
15–41. 

Keilman, N. (2000) Précision et incertitudes des prévisions nationales de 
population Pp. 33–67 in C. Wattelar et J. Duchêne (red.): Le défi de l'incertitude: 
Nouvelles approches en perspectives et prospective démographiques. Actes de la 
Chaire Quetelet 1995. Louvain-la-Neuve: Academia-Bruylant/L’Harmattan. 

Keilman, N. (2001) Data quality and accuracy of United Nations population 
projections, 1950–95. Population Studies 55(2): 149–164. 

Keilman, N. and H. Cruijsen, eds. (1992) National Population Forecasting in 
Industrialized Countries. Amsterdam etc.: Swets & Zeitlinger. 

Keilman, N., D.Q. Pham, and A. Hetland (2001) Norway's uncertain 
demographic future. Social and Economic Studies 105. Oslo: Statistics Norway. 
Internet www.ssb.no/english/ subjects/02/03/sos105_en. 

Keilman, N., D.Q. Pham, and A. Hetland (2002) Why population forecasts 
should be probabilistic – illustrated by the case of Norway. Demographic 
Research 6–15 May 2002, 409–453.  
Internet www.demographic-research.org/volumes/vol6/15/6-15.pdf. 

Keilman, N. and D. Q. Pham (2004) Empirical errors and predicted errors in 
fertility, mortality and migration forecasts in the European Economic Area. 
Discussion Paper 386, Statistics Norway. 

Keyfitz, N. (1981) The limits of population forecasting. Population and Devel-
opment Review 7: 579–593. 

Keyfitz, N. (1982) Can knowledge improve forecasts? Population and 
Development Review 8: 729–751. 

Keyfitz, N. (1985) A probability representation of future population. Zeitschrift 
für Bevölkerungswissenschaft 11: 179–191. 

Kuijsten, A. (1988) Demografische toekomstbeelden van Nederland 
(Demographic scenarios for the Netherlands). Bevolking en Gezin 1988/2: 97–
130. 



Perspectives on Mortality Forecasting II – Nico Keilman 

25 

Laplace, Pierre Simon de (1812–1829) Œuvres Vol. VII, Théorie Analytique des 
Probabilités. 

Lee, R. (1993) Modeling and forecasting the time series of US fertility: Age 
distribution, range, and ultimate level International, Journal of Forecasting 9: 
187–202. 

Lee, R. (1999) Probabilistic approaches to population forecasting, in W. Lutz, J. 
Vaupel, and D. Ahlburg (eds.). Frontiers of Population Forecasting. Supplement 
to Vol. 24 of Population and Development Review: 156–190. 

Lee, R. and S. Tuljapurkar (1994) Stochastic population forecasts for the United 
States: Beyond High, Medium, and Low, Journal of the American Statistical 
Association 89: 1175–1189. 

Lee, R. and S. Tuljapurkar (2001) Population forecasting for fiscal planning: 
Issues and Innovation. Pp. 7–57 in A. Auerbach and R. Lee (eds.). Demographic 
change and fiscal policy. Cambridge University Press. 

Lutz, W., W. Sanderson, and S. Scherbov (1996) Probabilistic population 
projections based on expert opinion pp. 397–428 in W. Lutz (ed.). The future 
population of the world: What can we assume today? London: Earthscan (rev. 
ed.). 

Lutz, W. and S. Scherbov (1998a) An expert-based framework for probabilistic 
national population projections: The example of Austria, European Journal of 
Population 14: 1–17. 

Lutz, W. and S. Scherbov (1998b) Probabilistische Bevölkerungsprognosen für 
Deutschland (Probabilistic population projections for Germany), Zeitschrift für 
Bevölkerungswissenschaft 23: 83–109. 

Lutz, W., W. Sanderson, and S. Scherbov (2001) The end of world population 
growth, Nature 412: 543–545. 

Nagel, E. (1961) The structure of science: Problems in the logic of scientific 
explanations. New York: Harcourt, Brace and World. 

National Research Council (2000) Beyond six billion: Forecasting the world's 
population. Panel on Population Projections. J. Bongaarts and R. Bulatao (eds.). 
Committee on Population, Commission on Behavioral and Social Sciences and 
Education. Washington DC: National Academy Press. 
Internet http://books.nap.edu/books/0309069904/html/index.html. 



Perspectives on Mortality Forecasting II – Nico Keilman 

26 

Pflaumer, P. (1986) Stochastische Bevölkerungsmodelle zur Analyse der 
Auswirkungen demographischer Prozesse auf die Systeme der sozialen 
Sicherung, Allg. Statist. Archiv 70: 52–74. 

Pflaumer, P. (1988) Confidence intervals for population projections based on 
Monte Carlo methods. International Journal of Forecasting 4: 135–142. 

Preston, S. (1974) An evaluation of postwar mortality projections in Australia, 
Canada, Japan, New Zealand, and the United States. WHO Statistical Report 27: 
719–745. 

Sanderson, W. (1995) Predictability, complexity, and catastrophe in a collapsible 
model of population, development, and environmental interactions. Mathematical 
Population Studies 5: 233–279. 

Schéele, S. (1981) Osäkerhet i befolkningsprognoser. Stockholm: Stockholms 
Kommune Utrednings- och Statistikkontor. 

Smith, S.K., J. Tayman, and D. Swanson (2001) State and Local Population 
Projections: Methodology and Analysis. New York: Kluwer Academic/Plenum 
Publishers (The Plenum series on demographic methods and population 
analysis). 

Statistics Norway (2005) Framskrivning av folkemengden 2002/2050 
(Population projections 2002/2050) NOS D 319, Oslo: Statistics Norway. 

Stoto, M. (1983) The accuracy of population projections. Journal of the 
American Statistical Association 78: 13–20. 

Tayman, J., E. Schafer, and L. Carter (1998) The role of population size in the 
determination and prediction of forecast errors: An evaluation using confidence 
intervals for subcounty areas. Population Research and Policy Review 17: 1–20. 

Tuljapurkar, S. (1996) Uncertainty in demographic projections: Methods and 
meanings. Paper Sixth Annual Conference on Applied and Business 
Demography. Bowling Green, 19–21 September 1996. 

United Nations (2001) World population prospects: The 2000 revision. Volume 
I: Comprehensive tables. New York: United Nations. 

United Nations (2005) World population prospects: The 2004 revision. New 
York: United Nations. 

White, H.R. (1954) Empirical study of the accuracy of selected methods of 
projecting state populations. Journal of the American Statistical Association 29: 
480–498. 



 

27 

Remarks on the Use of Probabilities in 
Demography and Forecasting 

Juha M. Alho 
Professor of Statistics at the University of Joensuu, Finland 

1 Introduction 
The concept of “probability” is used as a step in life table construction to get 
the expected number of survivors in a cohort. However, in traditional texts on 
demographic methods (e.g., Shryock and Siegel 1976), variance in the num-
ber of survivors plays no role. Similarly, concepts of estimation, estimation 
error, and bias are routinely used, but standard error and sampling distribu-
tion are not (except in connection with sample surveys). Although statisti-
cally satisfactory accounts of the life table theory have existed for a long time 
(e.g., Chiang 1968, Hoem 1970), a reason for neglecting population level 
random variability, and statistical estimation error, has been that the popula-
tions being studied are so large that random error must be so small as not to 
matter, in practice. 

In contrast, when statistical methods started to become used in population 
forecasting in the 1970s, 1980s and 1990s, some of the resulting prediction 
intervals have been criticized as being implausibly wide. This view has not 
often been expressed in print, but Smith (2001, 70–71) provides an example. 
Others, especially sociologically minded critics have gone further and argued 
that due to the nature of social phenomena, the application of probability 
concepts in general, is inappropriate. On the other hand, demographers com-
ing with an economics background have tended to find probabilistic thinking 
more palatable. 

The purpose of the following remarks is to review some probability models, 
and show how the apparent contradiction arises. We will see that the basic 
principles have been known for decades. The basic cause of the difficulties – 
and disagreements – is that there are several layers of probabilities that can be 
considered. Consequently, it is essential to be explicit about the details of the 
model. 
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2 Binomial and Poisson Models 
As emphasized by good introductory texts on statistics (e.g., Freedman, 
Pisani and Purves 1978, p. 497), the concept of probability can only be made 
precise in the context of a mathematical model. To understand why one often 
might ignore other aspects of random variables besides expectation, let us 
construct a model for the survival of a cohort of size n for one year. For each 
individual i = 1,...,n, define an indicator variable such that Xi = 1, if i dies 
during the year, and Xi = 0 otherwise. The total number of deaths is then X = 
X1 + ... + Xn. We assume that the Xi’s are random variables (i.e., their values 
are determined by a chance experiment). Suppose we make an assumption 
concerning their expectation 

 E[Xi] = q, I = 1,…,n, (1) 

and assume that 

 X1,…,Xn are independent. (2) 

It follows that X has a binomial distribution, X ~ Bin(n, q). As is well known, 
we have the expectation E[X] = nq, and variance Var(X) = n(q – q2). There-
fore, the coefficient of variation is C = ((1 – q)/nq)½. 

Now, in industrialized countries the probability of death is about 1 per cent 
and population size can be in the millions, so relative variation can, indeed, 
be small. For example, if q = 0.01 and n = 1,000,000, we have that C = 0.01. 
Or, the relative random variability induced by the model defined in (1) and 
(2) is about 1 per cent. Equivalent calculations have already been presented 
by Pollard (1968), for example. 

One might object to the conclusion that relative variability is negligible on 
the grounds that (1) does not hold: surely people of different ages (and of 
different sex, socio-economic status etc.) have different probabilities of 
death. Therefore, suppose that 

 E[Xi] = qi, with q = (q1 + … + qn)/n. (3) 

In this case 

 

n
2
i

i=1
Var(X) = nq - q∑

. (4) 
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However, it follows from the Cauchy-Schwarz inequality that 

 
n

2 2 2
i

i=1
n q n q≥∑ . (5) 

Therefore, we have that the variance (4) is actually less than the binomial 
variance. The naive argument based on population heterogeneity simply does 
not hold. 

Before proceeding further, let us note that, apart from substantive factors, 
heterogeneity of the type (3) is imposed on demographic data, because vital 
events are typically classified by age, so individuals contribute different times 
to the “rectangles” of the Lexis diagram. This is one reason why the basic 
data are typically collected in terms of rates, and a Poisson assumption is 
invoked. There is some comfort in the fact that if the assumptions (2) and (3) 
are complemented by the following assumptions: suppose the qi’s depend on 
n and as n → ∞, (i) nq = λ > 0, and (ii) max{q1,..., qn} → 0, then the distribu-
tion of X converges to Po(λ) (Feller 1968, p. 282). The Poisson model is of 
interest, because under that model E[X] = λ as before, but Var(X) = λ> n(q – 
q2). In other words, the Poisson model has a larger variability than the corre-
sponding binomial models. Quantitatively the difference is small, however, 
since now C = λ–1/2. If n = 1,000,000 and q = 0.01, then λ= 10,000, and C = 
0.01, for example. Or, the relative variability is the same as that under the 
homogeneous binomial model, to the degree of accuracy used. 

The usual demographic application of the Poisson model proceeds from the 
further identification λ= µK, where K is the person years lived in the popula-
tion, and µ is the force of mortality. The validity of this model is not self-
evident, since unlike n, K is also random. At least when λ is of a smaller or-
der of magnitude than K, the approximation appears to be good, however 
(Breslow and Day 1987, pp. 132–133). As is well-known, the maximum like-
lihood estimator of the force of mortality is µ̂  = X/K with the estimated stan-
dard error of X1/2/K. Extensions to log-linear models that allow for the incor-
poration of explanatory variables follow similarly. 

Since the Poisson distribution has the variance maximizing property, and it 
provides a model for both the independent trials and occurrence/exposure 
rates, we will below restrict the discussion primarily to the Poisson case. 
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3 Random Rates 
Since (1) is not the cause of the low level of variability in the number of 
deaths, we need to look more closely at (2). A simple (but unrealistic) exam-
ple showing that there are many opportunities here is the following. Suppose 
we make a single random experiment with probability of success = q, and 
probability of failure = 1 – q. If the experiment succeeds, define Xi = 1 for all 
i. Otherwise define Xi = 0 for all i. In this case we have, for example, that X = 
nX1, so E[X] = nq as before, but Var(X) = n2(q – q2), and C = ((1 – q)/q)1/2 
independently of n. For q = 0.01 we have C = 9.95, for example, indicating a 
huge (nearly 1,000 per cent) level of variability. 

More realistically, we may think that dependence across individuals arises 
because they may all be influenced by common factors to some extent, at 
least. For example, there may be year to year variation in mortality around a 
mean that is due to irregular trends in economics, epidemics, weather etc. If 
the interest would center on a given year, the model might still be X ~ 
Po(µK), but if several years are considered jointly, then the year-to-year 
variation due to such factors would have to be considered. In this case, we 
would entertain a hierarchical model of the type 

 X ~ Po(µK) with E[µ] = µ0, Var(µ) = σ2. 

In other words, the rate µ itself is being considered random, with a mean µ0 
that reflects the average level of mortality over the (relatively short) period of 
interest, and variance σ2 that describes the year to year variation. 

In this case we have that 

 Var(X) =E[Var(X| µ)] + Var(E[X|µ]) 

 = µ0K + σ2K2. (7) 

It follows that Var( µ̂ ) = σ2 + µ0/K. This result is of fundamental interest in 
demography, because if K is large, then the dominant part of the error is due 
to the annual variability. If the interest centers (as in the production of official 
population statistics) on a given year, with no regard to other years, we would 
be left with the pure Poisson variance µ0/K, which is often small. An excep-
tion is the oldest-old mortality, where Poisson variation is always an issue, 
because for ages high enough K will always be small and µ0 large. 

However, when the interest centers on the time trends of mortality, and even-
tually on forecasting its future values, then the year to year variation σ2 must 
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be considered. Under model (6) this is independent of population size K. This 
is a realistic first approximation, but we note that model (6) does not take into 
account the possibility that a population might consist of relatively independ-
ent subpopulations. In that case, populations having many such subpopula-
tions would have a smaller variance than a population with no independent 
subpopulations. 

4 Handling of Trends 
Consider now two counts. Or assume that for i = 1, 2, we have that 

 Xi ~ Po(µiKi) with E[µi] = µ0i, Var(µi) = σi
2, Corr(µ1, µ2) = ρ. (8) 

Repeating the argument leading to (7) for covariances yields the result 

 Corr(X1,X2) = ρ/{(1 + µ01/ σ1K1) (1 + µ02/ σ2K2)}½. (9) 

Or, the effect of Poisson variability is to decrease the correlation between the 
observed rates. We note that if the Ki’s are large, the attenuation is small. 
However, for the oldest old the Ki’s are eventually small, and the µ0i’s large, 
so attenuation is expected.  

In concentrating on Poisson variability that is primarily of interest in the as-
sessment of the accuracy of vital registration, demographers have viewed 
annual variation as something to be explained. Annual changes in mortality 
and fertility are analyzed by decomposing the population into ever finer sub-
groups in an effort to try to find out, which are the groups most responsible 
for the observed change. Often partial explanations can be found in this man-
ner, but they rarely provide a basis for anticipating future changes (Keyfitz 
1982). To be of value in forecasting, an explanation must have certain ro-
bustness against idiosyncratic conditions, and persistence over time. This 
leads to considering changes around a trend as random. 

One cause for why some demographers find statistical analyses of demo-
graphic time-series irritating seems to lie here: what a demographer views as 
a phenomenon of considerable analytical interest, may seem to a statistician 
as a mere random phenomenon, sufficiently described once σ2 is known. 
[This tension has counterparts in many parts of science. Linguists, for exam-
ple, differ in whether they study the fine details of specific dialects, or 
whether they try to see general patterns underlying many languages.] 
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In forecasting, the situation is more complex than outlined so far. In mortality 
forecasting one would typically be interested taking account of the nearly 
universal decline in mortality, by making further assumptions about time 
trends. For example, suppose the count at time t is of the form Xt ~ Po(µtKt), 
such that 

 log(µt) = α + βt + ξt, where E[ξt] = 0, Cov(ξt,ξs) = σ2 min{t,s}. (10) 

If the ξt’s have normal distributions, under (10) we would have that E[µt] = 
exp( α+ βt + σ2t/2)≡µ0t. (This model is closely related to the so-called Lee-
Carter model.) 

One reason that makes (10) more complicated than (8), is that µ0t involves 
parameters to be estimated, so standard errors become an issue. Especially, if 
Var( β̂ ) is large, this source of error may have a considerable effect for large 
t, because it induces a quadratic term into the variance of error, whereas the 
effect of the random walk via σ2 is only linear. 

The way Var( β̂ ) is usually estimated from past data assumes that the model 
specified in (10) is correct. Therefore, probabilistic analyses based on (10) 
are conditional on the chosen model. What these probabilities do not formally 
cover is the uncertainty in model choice itself (Chatfield 1996). 

One should pay attention to model choice because it is typically based on 
iteration, in which lack of fit is balanced against parametric parsimony (cf., 
Box and Jenkins 1976). One would expect error estimates calculated after a 
selection process to be too small, because of potential overfitting. Yet, a curi-
ous empirical fact seems to be that statistical time-series models identified 
and estimated in this manner, for example demographic time-series, often 
produce prediction intervals that are rather wide, and even implausibly wide 
in the sense that in a matter of decades they may include values that are tho-
ught to be biologically implausible. 

A possible explanation is that the standard time-series models belong to sim-
ple classes of models (e.g., (10) can be seen as belonging to models with 
polynomial trends with once integrated, or I(1), errors) and the identification 
procedures used are tilted in favor of simple models within those classes. 
This shows that although judgment is certainly exercised in model choice, it 
can be exercised in a relatively open manner that tends to produce models 
that are too simple rather than too complex. When such models are estimated 
from the data, part of the lack of fit is due to modeling error. Therefore, the 
estimated models can actually incorporate some aspects of modeling error. 
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Modeling error can sometimes be handled probabilistically by considering 
alternative models within a larger class of models, and by weighting the re-
sults according to the credibility of the alternatives (e.g., Draper 1995). Alho 
and Spencer (1985) discuss some minimax type alternatives in a demographic 
context. A simpler approach is to use models that are not optimized to pro-
vide the best possible fit obtainable. In that case the residual error may cap-
ture some of the modeling error, as well. 

5 On Judgment and Subjectivity in Statistical 
Modeling 

“One cannot be slightly pregnant”. In analogy, it is sometimes inferred from 
this dictum that if judgment is exercised in some part of a forecasting exerci-
se, then all probabilistic aspects of the forecast are necessarily judgmental in 
nature. In addition, since judgment always involves subjective elements, then 
the probabilities are also purely subjective. I believe these analogies are mis-
leading in that they fail to appreciate the many layers of probabilities one 
must consider. 

First, the assumption of binomial or Poisson type randomness is the basis of 
grouped mortality analyses, and as such implicitly shared by essentially all 
demographers. It takes some talent to see how such randomness could be 
viewed as subjective. 

Second, although models of random rates are not currently used in descripti-
ve demography, they are implicit in all analyses of trends in mortality. Such 
analyses use smooth models for trends, and deviations from trends are vie-
wed as random. The validity of alternative models can be tested against empi-
rical data and subjective preferences have relatively little role. 

On the other hand, models used in forecasting are different in that they are 
thought to hold in the future, as well as in the past. Yet, they can only be 
tested against the past. However, even here, there are different grades. In 
short term forecasting (say, 1–5 years ahead), we have plenty of empirical 
data on the performance of the competing models in forecasting. Hence, there 
is an empirical and fairly formal basis for the choice of models. In medium 
term forecasting (say, 10–20 years ahead), empirical data are much more 
scant, and alternative data sets produce conflicting results of forecast per-
formance. Judgment becomes an important ingredient in forecasting. In long-
term forecasting (say, 30+ years ahead), the probabilities calculated based on 
any statistical model begin to be dominated by the possibility of modeling 
error and beliefs concerning new factors whose influence has not manifested 
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itself in the past data. Judgment, and subjective elements that cannot be empi-
rically checked, get an important role. Note that the binomial/Poisson variabi-
lity, and the annual variability of the rates, still exist, but they have become 
dominated by other uncertainties. 

In short, instead of viewing probabilities in forecasting as a black and white 
subjective/objective dichotomy suggested by the “pregnancy dictum”, we 
have a gradation of shades of gray. 

6 On the Interpretation of Probabilities 
A remaining issue is how one might interpret the probabilities of various 
types. Philosophically, the problem has been much studied (e.g., Kyburg 
1970). It is well-known that the so-called frequency interpretation of probabi-
lities is not a logically sound basis for defining the concept of probability. 
(For example, laws of large numbers presume the existence of the concept of 
probability for their statement and proof.) However, it does provide a useful 
interpretation that serves as a basis of the empirical validation of statistical 
models we have discussed from binomial/Poisson variation to short and even 
medium term forecasting. For long term forecasting it is less useful, since we 
are not interested in what might happen if the history were to be repeated 
probabilistically again and again. We only experience one sample path. 

It is equally well-known that there is a logically coherent theory of subjective 
probabilities that underlies much of the Bayesian approach to statistics. This 
theory is rather more subtle than is often appreciated. As discussed by Savage 
(1954), for example, the theory is prescriptive in the sense that a completely 
rational actor would behave according to its rules. Since mere mortals are 
rarely, if ever, completely rational, the representation of actual beliefs in 
terms of subjective probabilities is a non-trivial task. 

For example, actual humans rarely contemplate all possible events that might 
logically occur. If a person is asked about three events, he might first say that 
A is three times as likely as B, and B is five times as likely as C; but later say 
that A is ten times as likely as C. Of course, when confronted with the intran-
sitivity of the answers, he could correct them in any number of ways, but it is 
not clear that the likelihood of any given event would, after adjustment, be 
more trustworthy than before. 

Actual humans are also much less precise as “computing machines” than the 
idealized rational actors. Suppose, for example, that a person P says that his 
uncertainty about the life expectancy in Sweden in the year 2050 can be re-
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presented by a normal distribution N(100, 82). One can then imagine the 
following dialogue with a questioner Q: 
Q: So you think the probability that life expectancy exceeds 110 years is 

over 10 per cent? 
P: I don’t know if I think that. If you say so. 
Q: Why can’t you say for sure? 
P: Because I can’t recall the 0.9 quantile of the standard normal distribution 

right now. 

(Upon learning that it is 1.2816, and calculating 100 + 1.2816*8 = 110.25 P 
then agrees.) 

Both difficulties suggest that any “subjective” probability statements need to 
be understood in an idealized sense. To be taken seriously, a person can hard-
ly claim that he or she “feels” that some probabilities apply. Instead, careful 
argumentation is needed, if one were to want to persuade others to share the 
same probabilistic characterization (Why a mean of 100 years? Why a stan-
dard deviation of 8 years? Why a normal distributional form?). 

7 Eliciting Expert Views on Uncertainty 
Particular problems in the elicitation of probabilistic statements from “ex-
perts” are caused by the very fact that an expert is a person who should know 
how things are. 

First, representing one’s uncertainty truthfully may be tantamount to saying 
that one does not really know, if what he or she is saying is accurate. A client 
paying consulting fees may then deduce that the person is not really an expert! 
Thus, there is an incentive for the expert to downplay his or her uncertainty. 

Second, experts typically share a common information basis, so presenting 
views that run counter to what other experts say, may label the expert as an 
eccentric, whose views cannot be trusted. This leads to expert flocking: an 
expert does not want to present a view that is far from what his or her collea-
gues say. An example (pointed out by Nico Keilman) is Henshels (1982, 71) 
assessment of the U.S. population forecasts of the 1930s and 1940s. The 
forecasts came too high because according to Henshel the experts talked too 
much to each other. Therefore, a consideration of the range of expert opini-
ons may not give a reasonable estimate of the uncertainty of expert judgment. 

Economic forecasting provides continuing evidence of both phenomena. 
First, one only has to think of stock market analysts making erroneous pre-
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dictions with great confidence on prime time TV, week after week. Second, 
one can think of think-tanks making forecasts of the GDP. Often (as in the 
case of Finland in 2001), all tend to err on the same side. 

Of course, an expert can also learn to exaggerate uncertainty, should it beco-
me professionally acceptable. However, although exaggeration is less serious 
than the underestimation of uncertainty, it is not harmless either, since it may 
discredit more reasonable views. 

A third, and much more practical problem in the elicitation of probabilities 
from experts stems from the issues discussed in Section 5. It is difficult, even 
for a trained person, to express one’s views with the mathematical precision 
that is needed. One approach that is commonly used is to translate probabili-
ties into betting language. (These concepts are commonly used in the Anglo-
Saxon world, but less so in the Nordic countries, for example.) If a player 
thinks that the probability is at least p that a certain event A happens, then it 
would be rational to accept a p : (1 – p) bet that A happens. (I.e., if A does 
not happen, the player must pay p, but if it does happen, he or she will re-
ceive 1 – p. If the player thinks the true probability of A occurring is ρ ≥ p, 
then the expected outcome of the game is ρ(1 – p) – (1 – ρ)p = ρ – p ≥ 0.) 

This approach has two problems, when applied in the elicitation of probabili-
ties from experts. First, it is sometimes difficult to convince the experts to 
take the notion of a gamble seriously when they know that the ”game” does 
not really take place. Even if the experts are given actual money with which 
to gamble, the amount may have an effect on the outcome. The second prob-
lem, in its standard form, the gambling argument assumes that the players are 
risk neutral. This may only be approximately true if the sums involved are 
small. If the sums are large, people tend to be more risk adverse (Arrow 
1971). Moreover, experimental evidence suggests (e.g., Kahneman et al. 
1982) that people frequently violate the principle of maximizing expected 
utility. 

The betting approach has been used in Finland to elicit expert views on mi-
gration (Alho 1998). In an effort to anchor the elicitation on something empi-
rical, a preliminary time series model was estimated, and the experts were 
asked about the probability content of the model based prediction intervals 
for future migration. Experts had previously emphasized the essential unpre-
dictability of migration, but seeing the intervals they felt that future migration 
is not as uncertain as indicated. The intervals were then narrowed down using 
the betting argument. In this case the use of an empirical bench mark may 
have lead to a higher level of uncertainty than would otherwise have been 
obtained. 
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1 Introduction 
The Dutch population forecasts published by Statistics Netherlands every 
other year project the future size and age structure of the population of the 
Netherlands up to 2050. The forecasts are based on assumptions about future 
changes in fertility, mortality, and international migration. Obviously, the 
validity of assumptions on changes in the long run is uncertain, even if the 
assumptions are expected to describe the expected future according to the 
forecasters. It is important that users of forecasts are aware of the degree of 
uncertainty. In order to give accurate information about the degree of uncer-
tainty of population forecasts Statistics Netherlands produces stochastic 
population forecasts. Instead of publishing two alternative deterministic (low 
and high) variants in addition to the medium variant, as was the practice up to 
a few years ago, forecast intervals are made. These intervals are calculated by 
means of Monte Carlo simulations. The simulations are based on assump-
tions about the probability distributions of future fertility, mortality, and in-
ternational migration. 

In the Dutch population forecasts the assumptions on the expected future 
changes in mortality primarily relate to life expectancy at birth. In the most 
recent Dutch forecasts assumptions underlying the medium variant1 are based 

                                                      

1 The description ‘medium variant’ originates from the former practice when 
several deterministic variants were published. Since no variants are published 
anymore it does not seem appropriate to speak of a medium variant anymore. 
However, abandoning this terminology would make users think that the medium 
variant is different from the expected value. For this reason we will still use 
‘medium variant’ while we mean the expected value. 
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on a quantitative model projecting life expectancy at birth of men and women 
for the period 2001–2050. The model describes the trend of life expectancy in 
the period 1900–2000 taking into account the effect of changes in smoking 
behaviour, the effect of the rectangularization of the survival curve and the 
effect of some other factors on changes in life expectancy at birth. Since the 
model is deterministic, it cannot be used directly for making stochastic fore-
casts. For that reason, the assumptions underlying the stochastic forecasts are 
based on expert judgement, taking into account the factors described by the 
model. 

This paper examines how assumptions on the uncertainty of future changes in 
mortality in the long run can be specified. More precisely, it discusses the use 
of expert knowledge for the specification of the uncertainty of future mortal-
ity. Section 2 briefly describes the methodology underlying the Dutch sto-
chastic population forecasts. Section 3 provides a general discussion on the 
use of expert knowledge in (stochastic) mortality forecasting. Section 4 ap-
plies the use of expert knowledge to the Dutch stochastic mortality forecasts. 
The paper ends with the main conclusions. 

2 Stochastic population forecasts: methodology 
Population forecasts are based on assumptions about future changes in fertil-
ity, mortality, and migration. In the Dutch population forecasts assumptions 
on fertility refer to age-specific rates distinguished by parity, mortality as-
sumptions refer to age- and sex-specific mortality rates, assumptions about 
immigration refer to absolute numbers, distinguished by age, sex and country 
of birth, and assumptions on emigration are based on a distinction of emigra-
tion rates by age, sex and country of birth. 

Based on statistical models of fertility, mortality, and migration, statistical 
forecast intervals of population size and age structure can be derived, either 
analytically or by means of simulations. In order to obtain a forecast interval 
for the age structure of a population analytically a stochastic cohort-
component model is needed. Application of such models, however, is very 
complicated. Analytical solutions require a large number of simplifying as-
sumptions. Examples of applications of such models are given by Cohen 
(1986) and Alho and Spencer (1985). In both papers assumptions are speci-
fied of which the empirical basis is questionable. 

Instead of an analytical solution, forecast intervals can be derived from simu-
lations. On the basis of an assessment of the probability of the bandwidth of 
future values of fertility, mortality, and migration, the probability distribution 
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of the future population size and age structure can be calculated by means of 
Monte Carlo simulations. For each year in the forecast period values of the 
total fertility rate, life expectancy at birth of men and women, numbers of 
immigrants and emigration rates are drawn from the probability distributions. 
Subsequently age-gender-specific fertility, mortality and emigration rates, 
and immigration numbers are specified. Each draw results in a population by 
age and gender at the end of each year. Thus the simulations provide a distri-
bution of the population by age and gender in each forecast year. 

To perform the simulations several assumptions have to be made. First, the 
type of probability distribution has to be specified. Subsequently, assump-
tions about the parameter values have to be made. The assumption about the 
mean or median value can be derived from the medium variant. Next, as-
sumptions about the value of the standard deviation have to be assessed. In 
the case of asymmetric probability distributions additional parameters have to 
be specified. Finally, assumptions about the covariances between the forecast 
errors across age, between the forecast years, and between the components 
have to be specified (see e.g., Lee, 1998). 

The main assumptions underlying the probability distribution of the future 
population relate to the variance of the distributions of future fertility, mortal-
ity, and migration. The values of the variance can be assessed in three ways: 
a. an analysis of errors of past forecasts may provide an indication of the 

size of the variance of the errors of new forecasts; 
b. estimates of the variance can be based on a statistical (time-series) model; 
c. on the basis of expert judgement values of the variance can be chosen. 

These methods do not exclude each other; rather they may complement each 
other. For example, even if the estimate of the variance is based on past er-
rors or on a time-series model judgement plays an important role. However, 
in publications the role of judgement is not always made explicit. 

a. An analysis of errors of past forecasts 
The probability of a forecast interval can be assessed on the basis of a com-
parison with the errors of forecasts published in the past. On the assumption 
that the errors are approximately normally distributed – or can be modelled 
by some other distribution – and that the future distribution of the errors is 
the same as the past distribution, these errors can be used to calculate the 
probability of forecast intervals of new forecasts. Keilman (1990) examines 
the errors of forecasts of fertility, mortality, and migration of Dutch popula-
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tion forecasts published between 1950 and 1980. He finds considerable dif-
ferences between the errors of the three components. For example, errors in 
life expectancy grow considerably more slowly than errors in the total fertil-
ity rate. Furthermore, he examines to what extent errors vary between periods 
and whether errors of recent forecasts are smaller than those of older fore-
casts, taking into account the effect of differences in the length of the forecast 
period. 

The question whether forecast accuracy has been increasing is important for 
assessing to what extent errors of past forecasts give an indication of the de-
gree of uncertainty of new forecasts. One problem in comparing old and new 
forecasts is that some periods are easier to forecast than others. Moreover, a 
method that performs well in a specific period may lead to poor results in 
another period. Thus one should be careful in drawing general conclusions on 
the size of forecast errors on the basis of errors in a given period. For examp-
le, since life expectancy at birth of men in the Netherlands has been increa-
sing linearly since the early 1970s, a simple projection based on a random 
walk model with drift would have produced rather accurate forecasts. Fig-
ure 1 shows that a forecast that would have been made in 1980 on the basis of 
a random walk model in which the intercept is estimated by the average 
change in the preceding ten years would have been very accurate for the pe-
riod 1980–2000. However, this does not necessarily imply that forecasts of 
life expectancy are very certain in the long run. If the same method would 
have been used for a forecast starting in 1975 the forecast would have been 
rather poor (Figure 1). Thus simply comparing the forecast errors of succes-
sive forecasts does not tell us whether recent forecasts are ‘really’ better than 
preceding forecasts. 
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Figure 1 Life expectancy at birth, men, projections of random walk 
(RW) with drift 

60

65

70

75

80

85

90

1950 1960 1970 1980 1990 2000 2010

obs. RW1975 RW1980

 

The fact that a forecast of life expectancy of men made in 1980 is more accu-
rate than a forecast made in 1975 does not imply that recent forecasts are 
more accurate than older forecasts. This is illustrated by Figure 2 which 
shows projections of life expectancy of women. Projections of the life expec-
tancy at birth of women based on a random walk model starting in 1980 are 
less accurate than projections starting in 1975. 

In order to be able to assess whether new forecasts are ‘really’ better than 
older ones, we need to know the reasons why the forecaster chose a specific 
method for a certain forecast period. This information enables us to conclude 
whether a certain forecast was accurate, because the forecaster chose the right 
method for the right period, or whether the forecaster was just more lucky in 
one period than in another. 

Thus, in order to assess whether errors of past forecasts provide useful infor-
mation about the uncertainty of new forecasts, it is important not only to 
measure the size of the errors but also to take into account the explanation of 
the errors. One main explanation of the poor development of life expectancy 
of men in the 1960s is the increase in smoking in previous decades, whereas 
the increase in life expectancy in subsequent years can partly be explained by 
a decrease in smoking. As women started to smoke some decades later than 
men, the development of life expectancy of women was affected negatively 
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not until the 1980s. This explains why a linear extrapolation of the trend in 
life expectancy of women starting in 1980 leads to overestimating the in-
crease in the 1980s and 1990s. On the other hand a linear extrapolation of the 
trend in life expectancy of men starting in 1975 leads to underestimating the 
increase in subsequent years. 

Figure 2 Life expectancy at birth, women, projections of random walk 
(RW) with drift 
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The question to what extent an analysis of past errors provides useful infor-
mation about the degree of uncertainty of new forecasts depends on the ques-
tion how likely it is that similar developments will occur again. The 1970-
based forecasts were rather poor because forecasters did not recognize that 
the negative development was temporary (Figure 3). If it is assumed that it is 
very unlikely that such developments will occur again, one may conclude that 
errors of new forecasts are likely to be smaller than the errors of the 1970-
based forecasts. For that reason, the degree of uncertainty of new forecasts 
can be based on errors of forecasts that were made after 1970. 

The decision which past forecasts to include is a matter of judgement. Thus, 
judgement plays a role in using errors of past forecasts for assessing the un-
certainty of new forecasts. Obviously one may argue that an ‘objective’ 
method would be to include all forecasts made in the past. However, this 
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implies that the results depend on the number of forecasts that were made in 
different periods. Since more forecasts were made after 1985 than in earlier 
periods, the errors of more recent forecasts weigh more heavily in calculating 
the average size of errors. On the other hand, for long-run forecasts one major 
problem in using errors of past forecasts for assessing the degree of uncer-
tainty of new forecasts is that the sample of past forecasts tends to be biased 
towards the older ones, as for recent forecasts the accuracy cannot yet be 
checked except for the short run (Lutz, Goldstein and Prinz 1996). Forecast 
errors for the very long run result from forecasts made a long time ago. Fig-
ure 3 shows that the 30 and 25 years ahead forecasts made in 1970 and 1975 
respectively are rather poor, so including these forecasts in assessing the un-
certainty of new forecasts may lead to overestimating the uncertainty in the 
long run. Figure 3 suggests that the forecasts made in the 1980s and 1990s 
may well lead to smaller errors in the long run than the forecasts made in the 
1970s, since the former forecasts are closeer to the observations up to now 
than the latter forecasts were at the same forecast interval. 

Figure 3 Life expectancy at birth, men, observations and historic 
forecasts 
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One way of assessing forecast errors in the long run is to extrapolate forecast 
errors by means of a time-series model (De Beer, 1997). The size of forecast 
errors for the long run can be projected on the basis of forecast errors of re-
cent forecasts for the short and medium run. Thus, estimates of ex ante fore-
cast errors can be based on an extrapolation of ex post errors. 

Rather than calculating errors in forecasts that were actually published, em-
pirical forecast errors can be assessed by means of calculating the forecast 
errors of simple baseline projections. Alho (1998) notes that the point fore-
casts of the official Finnish population forecasts are similar to projections of 
simple baseline projections, such as assuming a constant rate of change of 
age-specific mortality rates. If these baseline projections are applied to past 
observations, forecast errors can be calculated. The relationship between 
these forecast errors and the length of the forecast period can be used to as-
sess forecast intervals for new forecasts. 

b. Model-based estimate of forecast errors 
Instead of assuming that future forecast errors will be similar to errors of past 
forecasts, one may attempt to estimate the size of future forecast errors on the 
basis of the assumptions underlying the methods used in making new fore-
casts. If the forecasts are based on an extrapolation of observed trends, ex 
ante forecast uncertainty can be assessed on the basis of the time-series 
model used for producing the extrapolations. If the forecasts are based on a 
stochastic time-series model, the model produces not only the point forecast, 
but also the probability distribution. For example, ARIMA (Autoregressive 
Integrated Moving Average)-models are stochastic univariate time-series 
models that can be used for calculating the probability distribution of a fore-
cast (Box and Jenkins 1970). Alternatively, a structural time-series model can 
be used for this purpose (Harvey 1989). The latter model is based on a Bayes-
ian approach: the probability distribution may change as new observations 
become available. The Kalman filter is used for updating the estimates of the 
parameters. 

One problem in using stochastic models for assessing the probability of a 
forecast is that the probability depends on the assumption that the model is 
correct. Obviously, the validity of this assumption is uncertain, particularly in 
the long run. If the point forecast of the time-series model does not corre-
spond with the medium variant, the forecaster does apparently not regard the 
time-series model as correct. Moreover, time-series forecasting models were 
developed for short horizons, and they are not generally suitable for long run 
forecasts (Lee 1998). Usually, stochastic time-series models are identified on 
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the basis of autocorrelations for short time intervals only. Alternatively, the 
form of the time-series model can be based on judgement to constraint the 
long-run behaviour of the point forecasts such that they are in line with the 
medium variant of the official forecast (Tuljapurkar 1996). However, one 
should be careful in using such a model for calculating the variance of ex 
ante forecast errors, because of the uncertainty of the validity of the con-
straint imposed on the model. In assessing the degree of uncertainty of the 
projections of the model one should take into account the uncertainty of the 
constraint, which is based on judgement. 

c. Expert judgement 
In assessing the probability of forecast intervals on the basis of either an 
analysis of errors of past forecasts or an estimate of the size of model-based 
errors, it is assumed that the future will be like the past. Instead, the probabil-
ity of forecasts can be assessed on the basis of experts’ opinions about the 
possibility of events that have not yet occurred. For example, the uncertainty 
of long-term forecasts of mortality depends on the probability of technologi-
cal breakthroughs that may have a substantial impact on survival rates. Even 
though these developments may not be assumed to occur in the expected 
variant, an assessment of the probability of such events is needed to deter-
mine the uncertainty of the forecast. More generally, an assessment of ex ante 
uncertainty requires assumptions about the probability that the future will be 
different from the past. If a forecast is based on an extrapolation of past 
trends, the assessment of the probability of structural changes which may 
cause a reversal of trends cannot be derived directly from an analysis of his-
torical data and therefore requires judgement of the forecaster. With regard to 
mortality the assessment of the probability of unprecedented events like 
medical breakthroughs cannot be derived directly from models. Lutz, Sander-
son, Scherbov and Goujon (1996) assess the probability of forecasts on the 
basis of opinions of a group of experts. The experts are asked to indicate the 
upper and lower boundaries of 90 per cent forecast intervals for the total fer-
tility rate, life expectancy, and net migration up to the year 2030. Subjective 
probability distributions of a number of experts are combined in order to 
diminish the danger of individual bias. 

In the Dutch population forecasts the assessment of the degree of uncertainty 
of mortality forecasts is primarily based on expert judgement, taking into 
account errors of past forecasts and model-based estimates of the forecast 
errors. 
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3 Using expert knowledge 
Expert knowledge or judgement usually plays a significant role in population 
forecasting. The choice of the model explaining or describing past develop-
ments cannot be made on purely objective, e.g., statistical criteria. Moreover, 
the application of a model requires assumptions about the way parameters 
and explanatory variables may change. Thus, forecasts of the future cannot be 
derived unambiguously from observations of the past. Judgement plays a 
decisive role in both the choice of the method and the way it is applied. “The-
re can never be a population projection without personal judgement. Even 
models largely based on past time-series are subject to a serious judgemental 
issue of whether to assume structural continuity or any alternative structure” 
(Lutz, Goldstein and Prinz 1996). 

Forecasts of mortality can be based on extrapolation of trends in mortality 
indicators or on an explanatory approach. In both cases forecasters have to 
make a number of choices. In projecting future changes in mortality on the 
basis of an extrapolation of trends, one important question is which indicator 
is to be projected. If age- and gender-specific mortality rates are projected 
one may choose to assume the same change for each age (ignoring changes in 
the age pattern of mortality) or one may project each age-specific rate sepa-
rately (which may result in a rather irregular age pattern). Instead of project-
ing separate age-specific mortality rates one may project a limited number of 
parameters of a function describing the age pattern of mortality, e.g., the 
Gompertz curve or the Heligman-Pollard model. One disadvantage of the 
Heligman-Pollard model is that it includes many parameters that cannot be 
projected separately. This makes the projection process complex. On the 
other hand, the disadvantage of using a simple model with few parameters is 
that such models usually do not describe the complete age pattern accurately. 
Another possible forecasting procedure is based on a distinction of age, pe-
riod and cohort effects. If cohort effects can be estimated accurately, such 
models may be appropriate for making forecasts for the long run. However, 
one main problem in using an APC model is that the distinction between 
cohort effects and the interaction of period and age effects for young cohorts 
is difficult. Finally the indicator most widely used in mortality forecasting is 
life expectancy at various ages, especially life expectancy at birth. Using life 
expectancy at birth additional assumptions have to be made about changes in 
the age pattern of mortality rates. 

In addition to the choice of the indicator to be projected, other choices have 
to be made. One main question is which observation period should be the 
basis for the projections. An extrapolation of changes observed in the last 20 
or 30 years may result in quite different projections than an extrapolation of 
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changes in the last 50 or more years. Another important question is the choice 
of the extrapolation procedure: linear or non-linear. This question is difficult 
to be answered on empirical grounds: different mathematical functions may 
describe observed developments about equally well, but may lead to quite 
different projections in the long run. In summary, judgement plays an impor-
tant role in extrapolations of mortality. 

Instead of an extrapolation of trends forecasts of mortality may be based on 
an explanatory approach. In making population forecasts usually a qualitative 
approach is followed. On the basis of an overview of the main determinants 
of mortality (e.g., changes in living conditions, life style, health care, safety 
measures, etc.) and of assumptions about both the impact of these determi-
nants on the development of mortality and future changes in the determi-
nants, it is concluded in which direction mortality may change. Clearly, if no 
quantitative model is specified, the assumptions about the future change in 
mortality are largely based on judgement. However, even if a quantitative 
model would be available, judgement would still play an important role, 
since assumptions would have to be made about the future development in 
explanatory variables. 

In most developed countries life expectancy has been rising during a long 
period. Therefore, in assessing the uncertainty of forecasts of mortality the 
main question does not seem to be whether life expectancy will increase or 
decrease, but rather how strongly life expectancy will increase and how long 
the increase will continue. Basically, three types of change may be assumed. 
Firstly, one may assume a linear increase in life expectancy (which is not the 
same as a linear decrease of age-specific mortality rates) or a linear decline in 
the logarithm of the age-specific mortality rates. Such a trend may be ex-
plained by gradual improvements due to technological progress and increase 
in wealth. Secondly, one may assume that the rate of change is declining. For 
example, one may assume that the increase in life expectancy at birth will 
decline due to the fact that mortality rates for the youngest age groups are 
already so low that further improvements will be relatively small. More gen-
erally, the slowing down of the increase in life expectancy is related to the 
rectangularisation of the survival curve. Thirdly, it may be assumed that due 
to future medical breakthroughs life expectancy may increase more strongly 
than at present. 

The assumption about the type of trend is not only relevant for the specifica-
tion of the medium variant but also for assessing the degree of uncertainty of 
the forecasts. Obviously, if one assumes that trends will continue and that the 
uncertainty only concerns the question whether or not the rate of change will 
be constant or will decline gradually, the uncertainty of the future value of 
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life expectancy is much smaller than if one assumes that life expectancy may 
change in new, unprecedented directions due to medical breakthroughs. 

As discussed above, one problem in determining the long-run trend in life 
expectancy is the choice of the base period. If one fits a mathematical func-
tion to the observed time series of life expectancy in a given period, the re-
sults may be quite different than if a model is fitted to another period. Either 
the estimated values of the parameters of the function may differ or even 
another function may be more appropriate. One cause of the sensitivity of the 
fitted function to the choice of the period is that part of the changes in life 
expectancy are temporary. For example, the increase in smoking by men in 
the Netherlands starting before the Second World War to a level of about 90 
per cent in the 1950s and the decline in the 1960s and 1970s to a level of 
about 40 per cent had a significant effect on the trend in life expectancy: it 
caused a negative development in life expectancy in the 1960s and an upward 
trend in the 1980s and 1990s. It is estimated that smoking reduced life expec-
tancy at birth around 1975 by some four years. If the percentage of smokers 
stabilizes at the present level, the negative effect of smoking can be expected 
to decline to two years. This pattern of change in mortality due to smoking is 
one explanation why the choice of the base period for projecting mortality 
has a strong effect on the extrapolation. It makes a lot of difference whether 
the starting year of the base period is chosen before the negative effect of 
smoking on life expectancy became visible or around the time that the nega-
tive effect reached its highest value. Another example of transitory changes is 
the decline in mortality at young ages. In the first half of the 20th century the 
decline in mortality of newborn children was much stronger than at present. 
As a consequence, life expectancy at birth increased more strongly than at 
present. If these transitory changes are not taken into account in fitting a 
function to the time series of life expectancy, the long-run projections may be 
biased as temporary changes are erroneously projected in the long run. 

In order to avoid these problems, Van Hoorn and De Beer (2001) developed a 
model in which the development of life expectancy over a longer period, 
1900–2000, is described by a long-term trend together with the assumed ef-
fects of smoking, the rectangularization of the survival curve, the introduc-
tion of antibiotics after the Second World War, the increase and subsequent 
decline in traffic accidents in the 1970s and changes in the gender difference 
due to other causes than smoking. The long-run trend is described by a nega-
tive exponential curve. Figure 4 shows the assumed effects of selected deter-
minants on the level of life expectancy. Figure 5 shows that the model fits the 
data very well (see the appendix for a more extensive description of the mo-
del). Figure 5 also shows projections up to 2050. This model projects a 
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smaller increase in life expectancy of men than, e.g., a linear extrapolation of 
the changes in the last 25 years or so would have done. 

Since the model is deterministic, it cannot be used directly for making sto-
chastic forecasts. The projections of the model are uncertain for at least two 
reasons. Firstly, it is not sure that the model is specified correctly. Several 
assumptions were made about effects on life expectancy which may be false. 
Secondly, in the future new unforeseen developments may occur that cannot 
be specified on the basis of observations. For example, future medical break-
throughs may cause larger increases in life expectancy than what we have 
seen so far. For this reason expert knowledge is necessary to estimate the 
probability and the impact of future events that have not occurred in the past. 

Figure 4 Effects on life expectancy at birth 
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Figure 5 Life expectancy at birth: observations and model 
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4 Expert knowledge in the Dutch stochastic 
mortality forecasts 

For making stochastic forecasts of mortality it is assumed that the projections 
of the model described in section 3 correspond with the expected values of 
future life expectancy. Assuming future life expectancy to be normally dis-
tributed, assumptions need to be made on the values of the standard devia-
tions of future life expectancy. 

As mentioned in section 2 both an analysis of previous forecasts and model-
based estimates of forecast variances can be combined with expert judge-
ment. One problem in using information on historic forecasts to assess the 
uncertainty of new long-run forecasts is that there are hardly any data on 
forecast errors for the long run. Alternatively, forecast errors for the long run 
can be projected on the basis of forecast errors for the short and medium 
term. Time-series of historic forecast errors can be modelled as a random 
walk model (without drift). On the basis of this model the standard error of 
forecast errors 50 years ahead is estimated at two years. This implies that the 
95 per cent forecast interval for the year 2050 equals eight years. Alterna-
tively, the standard error of forecast errors can be projected on the basis of a 
time-series model describing the development of life expectancy. The devel-
opment of life expectancy at birth for men and women in the Netherlands can 
be described by a random walk model with drift (Lee and Tuljapurkar 1994, 
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model mortality in the United States as a random walk with drift too). The 
width of the 95 per cent forecast interval produced by this model for the year 
2050 equals 12 years. Thus, on the basis of the time-series models of life 
expectancy and models of forecast errors of life expectancy it can be ex-
pected that the 95 per cent forecast interval of life expectancy in 2050 will be 
around 8–12 years. The decision which interval is to be used is based on 
judgement. Judgement ought to be based on an analysis of the processes un-
derlying changes in life expectancy. The judgemental assumptions underlying 
the Dutch forecasts are based on four considerations. 

(1) It is regarded highly likely that the difference in mortality between men 
and women will continue to decrease. This difference has arisen in the past 
decades largely because of differences in smoking habits. As smoking habits 
of men and women have become more similar, the gender difference in life 
expectancy is assumed to decrease in the forecasts. 

(2) Changes in life expectancy at birth are the result of changes in mortality 
for different age groups. In assessing the degree of uncertainty of forecasts of 
life expectancy, it is important to make a distinction by age as the degree of 
uncertainty of future changes in mortality differs between age categories. The 
effect of the uncertainty about the future development of mortality at young 
ages on life expectancy at birth is only small, because of the current, very low 
levels of mortality at young ages. On the basis of the current age specific 
mortality rates, 95.3 per cent of live born men and 96.6 per cent of women 
would reach the age of 50. Clearly, the upper limits are not far away. Accord-
ing to the medium variant of the 2000 Dutch population forecasts the per-
centage of men surviving to age 50 will rise to 97.0 per cent in 2050 and the 
percentage of women to 97.4 per cent. A much larger increase is not possible. 
A decrease does not seem very likely either. That would, e.g., imply that 
infant mortality would increase, but there is no reason for such an assump-
tion. The increase in the population with a foreign background could have a 
negative effect on mortality, since the infant mortality rates for this popula-
tion group are considerably higher than those for the native population. How-
ever, it seems much more likely that infant mortality rates for the foreign 
population will decline rather than that they would increase. Furthermore, the 
effect on total mortality is limited. Another cause of negative developments 
at young ages could be new, deadly diseases. The experience with AIDS, 
however, has shown that the probability that such developments would have 
a significant impact on total mortality in the Netherlands (in contrast with, 
e.g., African countries) does not seem very large. A third possible cause of 
negative developments at young ages would be a strong increase in accidents 
or suicides. However, there are no indications of such developments. Thus it 
can be concluded that the effect of the uncertainty about mortality at young 
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ages on the uncertainty about the future development of life expectancy at 
birth is limited. 

(3) As regards older age groups one main assumption underlying the Dutch 
mortality forecasts is that the main cause of the increase in life expectancy at 
birth is that more people will become old rather than old people becoming 
still older. This implies the assumption that the survival curve will become 
more rectangular, an assumption based on an analysis of changes in age-
specific mortality rates. The development of mortality rates for the eldest age 
groups in the 1980s and 1990s has been less favourable than for the middle 
ages. Another reason for assuming ‘rectangularisation’ of the survival curve 
is that expectations about a large increase in the maximum life span seem 
rather speculative, and even if they would become true, it is questionable 
whether their effect would be large during the next 50 years or so. A very 
strong progress of life expectancy can only be reached if life styles would 
change drastically or if medical technology would generate fundamental im-
provements (and health care would be available for everyone). Assuming a 
tendency towards rectangularisation of the survival curve implies that uncer-
tainty about the future percentage of survivors around the median age of dy-
ing is relatively high. If the percentage of survivors around that age would be 
higher than in the medium variant (i.e., if the median age would be higher), 
the decrease in the slope of the survival curve at the highest ages age will be 
steeper than in the medium variant. Thus, the deviation from the medium 
variant at the highest ages will be smaller than around the median age. This 
implies that the degree of uncertainty associated with forecasts of life expec-
tancy at birth mainly depends on changes in the median age of dying rather 
than on changes in the maximum life span. According to the medium variant 
of the 2000 population forecasts the percentage of survivors at age 85 in the 
year 2050 will be little under 50 per cent for men and slightly over 50 per 
cent for women. For that reason the degree of uncertainty of the mortality 
forecast is based on the assessment of a forecast interval at age 85. 

(4) The last consideration concerns the important point of discussion whether 
medical breakthroughs can lead to an unexpectedly strong increase of life 
expectancy. Even in case of a significant improvement of medical technol-
ogy, it will be questionable to what extent this future improvement will 
lengthen the life span of present generations. It should be kept in mind that 
the mortality forecasts are made for the period up to 2050, and thus primarily 
concern persons already born. Experts who think that a life expectancy at 
birth could reach a level of 100 years or higher usually do not indicate when 
such a high level could be reached. It seems very unlikely that this will be the 
case in the period before 2050. 
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The four considerations discussed above are used to specify forecast inter-
vals. According to the medium variant assumptions on the age-specific mor-
tality rates for the year 2050, 41 per cent of men will survive to age 85 (Fig-
ure 6). According to the present mortality rates, little more than 25 per cent of 
men would reach age 85. Because it is assumed to be unlikely that possible 
negative developments (e.g., a strong increase in smoking or new diseases) 
will predominate positive effects of improvement in technology and living 
conditions during a very long period of time, the lower limit of the 95 per 
cent forecast interval for the year 2050 is based on the assumption that it is 
very unlikely that the percentage of survivors in 2050 will be significantly 
lower than the current percentage. For the lower limit it is assumed that one 
out of five men will survive to age 85. This would imply that the median age 
of death is 77.5 years. The upper limit of the forecast interval is based on the 
assumption that it is very unlikely that about two thirds of men will survive 
past the age of 85. The median age of death would increase to 88 years. Cur-
rently, only 16 per cent of men survive past the age of 88. A higher median 
age at dying than 88 seems thus very unlikely. 

Figure 6 Survivors at age 85; medium variant and 95% forecast 
interval 
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As discussed above, the medium variant assumes that the gender difference 
will become smaller. This implies that life expectancy of women will in-
crease less strongly than that of men. This is in line with the observed devel-
opment since the early 1980s. Consequently, the probability that future life 
expectancy of women will be lower than the current level is higher than the 
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corresponding probability for men. The lower limit of the 95 per cent forecast 
interval corresponds with a median age at dying of 81 years, which equals the 
level reached in the early 1970s. This could become true, e.g., if there would 
be a strong increase in mortality by lung cancer and coronary heart diseases 
due to an increase in smoking. The upper limit of the forecast interval is 
based on the assumption that three quarters of women will reach age 85. This 
would imply that half of women would become older than 91 years. This is 
considerably higher than the current percentage of 21. It does not seem very 
likely that the median age would become still higher. 

The intervals for the percentage of survivors at the age of 85 for the interme-
diate years are assessed on the basis of the random walk model (Figure 6). 

On the basis of these upper and lower limits of the 95 per cent forecast inter-
val for percentages of survivors at age 85, forecast intervals for percentages 
of survivors at the other ages are assessed, based on the judgemental assump-
tion that for the youngest and eldest ages the intervals are relatively smaller 
than around the median age (Figure 7). The age pattern of changes in mortali-
ty rates in the upper and lower limit are assumed to correspond with the age 
pattern in the medium variant. 

The assumptions on the intervals of age-specific mortality rates are used to 
calculate life expectancy at birth. These assumptions result in a 95 per cent 
forecast interval for life expectancy at birth in 2050 of almost 12 years. For 
men the interval ranges from 73.7 to 85.4 years and for women from 76.7 to 
88.5 years (Figure 8). The width of these intervals closely corresponds with 
that of the interval based on the random walk with drift model of life expec-
tancy at birth mentioned before. 

Figure 7 Survival curves; medium variant and 95% forecast interval 
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Figure 8 Life expectancy at birth; medium variant and 95% forecast 
interval 
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The intervals for the Netherlands are slightly narrower than the intervals for 
Germany specified by Lutz and Scherbov (1998). They assume that the width 
of the 90 per cent interval equals 10 years in 2030. This is based on the as-
sumption that the lower and upper limits of the 90 per cent interval of the 
annual increase in life expectancy at birth equal 0 and 0.3 years respectively. 
This would imply that the width of the 90 per cent interval in 2050 equals 
about 15 years. 

5 Conclusions 
Long-term developments in mortality are very uncertain. To assess the degree 
of uncertainty of future developments in mortality and other demographic 
events several methods may be used: an analysis of errors of past forecasts, a 
statistical (time-series) model and expert knowledge or judgement. These 
methods do not exclude each other; rather they may complement each other. 
For example, even if the assessment of the degree of uncertainty is based on 
past errors or on a time-series model judgement plays an important role. 
However, in publications the role of judgement is not always made explicit. 

The most recent Dutch mortality forecasts are based on a model that forecasts 
life expectancy at birth. Implementation of the model is based on literature 
and expert knowledge. The model includes some important determinants of 
mortality, such as the effect of smoking and gender differences. Since the 
model is deterministic, it cannot be used for stochastic forecasting. Therefore, 
an expert knowledge approach is followed. This approach can be described as 
‘argument-based forecasting’. Basically, four quantitative assumptions are 
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made: (1) the difference in mortality between men and women will continue 
to decrease, (2) the effect of uncertainty about mortality is limited at young 
ages and is highest around the median age of dying, (3) the effect of medical 
breakthroughs on the life span will be limited up to 2050, and (4) more peop-
le will become old rather than old people will become still older (rectangula-
risation of the survival curve). Based on these assumptions target values for 
the boundaries of 95 per cent forecast intervals are specified. It appears that 
the width of the 95 per cent interval of life expectancy at birth in 2050 is 
almost twelve years, both for men and women. This interval closely resemb-
les the interval based on a random walk model with drift. It is about four 
years wider than the interval based on a time-series model of errors of histo-
ric forecasts. 
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Appendix 

An explanatory model for Dutch mortality 
There are several ways to explain mortality. One approach is to assume a 
dichotomy of determinants of mortality - internal factors and external factors. 
For instance age, sex and constitutional factors are internal, whereas living 
and working conditions as well as socio-economic, cultural and environ-
mental conditions are external. Other factors, such as life styles and education 
are partly internal, partly external. 

An alternative approach takes the life course as a leading principle for a 
causal scheme. Determinants that act in early life are placed in the beginning 
of the causal scheme, those that have an impact later in life are put at the end. 
In this way heredity comes first and medical care comes last. Factors like life 
styles are in the middle. In the following scheme this approach is elaborated, 
though some elements of the first approach are used also. Eight categories of 
important determinants are distinguished: 
A. Heredity (including gender) 
B. Gained properties (education, social status) 
C. Life styles (risk factors like smoking, relationships) 
D. Environment (living and working conditions) 
E. Health policy (prevention of accidents, promotion of healthy life styles) 
F. Medical care (technological progress and accessibility of cure and care) 
G. Period effects (wars, epidemics) 
H. Rectangularity of survival curve 

Interactions of gender with other factors should be taken in account in fore-
casting mortality because a lot of differences between men and women exist. 
Categories A, B, C and D reflect heterogeneity in mortality in the population, 
while groups E, F and G reflect more general influences. As life expectancy 
is the dependent variable in the explanatory model, a supplementary factor 
(H) is needed which is dependent on the age profile of the survival curve. 
When the survival curve becomes more rectangular, a constant increase in 
life expectancy can only be achieved through ever-larger reductions of morta-
lity rates. 
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Most of the eight categories listed above contain many determinants. Of 
course it is not possible to trace and quantify all determinants. The selection 
of variables is based on the following criteria: 
1. there is evidence about the magnitude of the effect and about changes over 

time; 
2. independence of effects; and 
3. there is a good possibility to formulate assumptions for the future. 

In category C (life styles), smoking is a good example of a suitable explana-
tory factor since there is considerable evidence about the prevalence of smok-
ing in the population and the effect on mortality. In category E the effect of 
safety measures on death from traffic accidents is an example of an inde-
pendent and relatively easy factor to estimate. The same holds for category F 
for the introduction of antibiotics which caused a sharp drop in mortality by 
pneumonia. 

On the contrary, general medical progress is not a very suitable factor, be-
cause there is much uncertainty and divergence of opinions about the impact 
on life expectancy. The effect is hard to separate from that of social progress, 
growth of prosperity, cohort-effects etc. 

Part of the variation in mortality (life expectancy) can be modelled by separa-
te effects, the rest is included in the trend. It must be stressed that the model 
does not quantify the effect of the determinants on causes of death (for in-
stance smoking on death rates of lung cancer and heart diseases), but directly 
links them with overall mortality (life expectancy). 

Six determinants that meet the three criteria were included in the model. Fig-
ure 4 in the paper shows the assumptions about the effect of these determi-
nants on life expectancy at birth in the observation period (1900–2000) and 
the forecast period (2001–2050). 

A. Heredity: gender difference. Part of the gender difference in mortality can 
be attributed to differences in smoking behaviour (see C). Gender differences 
due to other factors were not constant through the entire 20th century. How-
ever, since 1980 the difference seems to have stabilised. The change in the 
gender difference in life expectancy in the 20th century can be described by a 
log normal curve. 

B. Gained properties. There are strong differences in mortality between so-
cial groups. However, these effects were not included in the model. One rea-
son is that there is a strong correlation with, e.g., life styles, living and work-
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ing conditions and access to medical care. Thus, the second criterion men-
tioned above is violated. 

C. Life style: smoking. On the basis of the literature the different effects for 
men and women are estimated. The effects can be quantified with a combina-
tion of a normal and a logistic curve. Smoking largely explains the quite dif-
ferent developments of life expectancy for men and women in the past dec-
ades. As smoking habits of men and women become more similar, in the 
forecasts the gender difference in life expectancy is assumed to decrease and 
finally become three years (in favour of women). 

D. Environment. These effects can be characterised as gradual long-term 
changes. It is hard to distinguish these effects from a general long-term trend. 
Hence these factors are not included in the model as separate effects but are 
included in the trend. 

E. Health policy: traffic accidents. In the early 1970s measures were taken to 
improve safety of traffic. As a result the number of deaths by traffic accidents 
declined. This effect is modelled as a deviation of the trend. Around 1970 the 
number of traffic accidents reached its highest level. A log normal curve ap-
pears to be appropriate for describing changes through time. 

F. Medical care: introduction of antibiotics. After the Second World War the 
introduction of antibiotics caused a sharp decline of mortality by pneumonia. 
A logistic function describes the rise in life expectancy and the flattening out 
to a constant level. 

G. Period effects: outliers. The Spanish flue and the Second World War 
caused sharp negative deviations of life expectancy, which are modelled by 
dummies. 

H. Rectangularity. The shape of the survival curve has an important impact 
on the pace of the increase of life expectancy. If the survival curve in year t is 
more rectangular than in year s, a given reduction in all age-specific death 
rates in both years will result in a smaller increase in life expectancy in year t 
than in year s. We define the rectangularity effect as the growth of life expec-
tancy in year t divided by the growth in the year 1895 caused by the same 
percentage of decline of all age-specific mortality rates. A linear spline func-
tion is used to smooth the results. The increase in life expectancy in 1995 
appears to be only 40 per cent of that in 1895. 

The new model contains a lot of parameters and simultaneous estimation can 
be problematic (unstable estimates). Therefore, the parameters were estima-
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ted in two steps. In the first step values of parameters of the functions descri-
bing the effect of smoking, traffic accidents, the introduction of antibiotics, 
and rectangularity were chosen in such a way that the individual functions 
describe patterns that correspond with available evidence. In the second step 
the values of the trend parameters and the outliers were estimated on the basis 
of non-linear least squares and some values of parameters fitted in the first 
step were ‘fine-tuned’. 

Several functions were tested to fit the trend. A negative exponential curve 
appears to fit the development since 1900 best (see Figure 5 in the paper). 
This function implies that there is a limit to life expectancy. However, ac-
cording to the fitted model this is not reached before 2100. 

The model is: 
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where e0,g,t is life expectancy at birth for gender g in year t, T is trend, S is the 
effect of smoking, V is the effect of traffic accidents, A is the introduction of 
antibiotics, G is the unexplained gender difference, u are outliers, ε is error, H 
is slope of the trend and R is the effect of the rectangularity of the survival 
curve. 



 

65 

Stochastic Forecasts of Mortality, 
Population and Pension Systems … 

Shripad Tuljapurkar 
Professor, Stanford University, Stanford 

1 Introduction 
This paper discusses the construction of stochastic forecasts of human mor-
tality and fertility rates and their use in making stochastic forecasts of pen-
sion funds. The method of mortality analysis was developed by Lee and 
Carter (1992), henceforth called the LC method. Lee and Tuljapurkar (1994) 
combined the LC method with a related fertility forecast to make stochastic 
population forecasts for the US. Tuljapurkar and Lee (1999) and Lee and 
Tuljapurkar (2000) combined these population forecasts with a number of 
other forecasts to generate stochastic forecasts of the US Social Security sys-
tem. 

My goal is to explain the distinctive features, strengths, and shortcomings of 
the stochastic method rather than to explain the method. I begin with a dis-
cussion of stochastic forecasts and their differences from scenario forecasts. 
Then I discuss mortality forecasts using Swedish mortality data, including a 
new forecast for Sweden. I go on to consider briefly how population forecasts 
are made and their use in modeling pension systems. 

2 Stochastic forecasts 
A population forecast made in year T aims to predict population P(t) for later 
years, where P includes numbers and composition. The information on which 
the forecast is based includes the history of the population and of environ-
mental factors (economic, social, etc.). Every forecast maps history into a 
prediction. Scenario forecasts rely on a subjective mapping made by an ex-
pert, whereas stochastic forecasts attempt to make an explicit model of the 
historical dynamics and project this dynamic into the future. Stochastic fore-
casts may rely partly on a subjective mapping as well. What are the pros and 
cons of the two approaches? 
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When historical data contain a strong “signal” that describes the dynamics of 
a process, it is essential to use the signal as a predictive mechanism. Equally, 
it is important to include information that is not contained in the signal – this 
residual information is an important element of uncertainty that should be 
reflected in the forecast. The LC method shows that there is such a signal in 
mortality history. When there is no strong signal in the historical data, a sub-
jective prediction may be unavoidable. Fertility history tends to reveal rela-
tively little predictive signal. Even here, uncertainty ought to be included 
because history does tell us about uncertainty, and we can estimate the vari-
ability around a subjective prediction. 

The use of history to assess uncertainty certainly does make assumptions 
about persistence in the dynamic processes that drive the variables we study. 
This does not imply that we assume an absence of surprises or discontinuities 
in the future. Rather it assumes that all shocks pass through a complex filter 
(social, economic, and so on) into demographic behavior, and that future 
shocks will play out in the same statistical fashion as past shocks. I would not 
abandon this assumption without some demonstration that the filtering 
mechanisms have changed – witness for example the stock market bubble in 
the US markets in 1999–2000 and its subsequent decline. It may be useful to 
think about extreme scenarios that restructure aspects of how the world works 
– one example is the possibility that genomics may change the nature of both 
conception and mortality in fundamental ways – but I regard the exploration 
of such scenarios as educational rather than predictive. 

I argue strongly for the systematic prediction of uncertainty in the form of 
probability distributions. This position does not argue against using subjec-
tive analysis where unavoidable. One way of doing a sound subjectively 
based analysis is to follow the work of Keilman (1997, 1998) and Alho and 
Spencer (1997) and use a historical analysis of errors in past subjective fore-
casts to generate error distributions and project them. The practice of using 
“high-low” scenarios should be avoided. Uncertainty accumulates, and must 
be assessed in that light. In my view, the best that a scenario can do is suggest 
extreme values that may apply at a given time point in the future – for exam-
ple, demographers are often reluctant to believe that total fertility rate (TFR) 
will wander far from 2 over any long interval, so the scenario bounds are 
usually an acceptable window around 2, such as 1.5 to 2.2. Now this may be 
plausible as a period interval in the future but in fact tells us nothing useful 
about the dynamic consequences of TFR variation over the course of a pro-
jection horizon. 

Uncertainty, when projected in a probabilistic manner, provides essential 
information that is as valuable as the central location of the forecast. To start 
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with, probabilities tell us how rapidly the precision of the forecast degrades 
as we go out into the future. It can also be the case that our ability to predict 
different aspects of population may differ, and probability intervals tell us 
about this directly. Probabilities also make it possible to use risk metrics to 
evaluate policy: these are widely used in insurance, finance, and other appli-
cations, and surely deserve a bigger place in population-related planning and 
analysis. 

3 Mortality forecasts 
The LC method seeks a dominant temporal “signal” in historical mortality 
data in the form of the simplest model that captures trend and variation in 
death rates, and seeks it by a singular-value decomposition applied to the 
logarithms log m(x,t) of central death rates. For each age x subtract the sam-
ple average a(x) of the logarithm, and obtain the decomposition 

log m(x,t) − a(x) = ∑i s i u i (x) vi (t). 

On the right side above are the real singular values s1 ≥ s2 ...≥ 0. The ratio of 
s1

2 to the sum of squares of all singular values is the proportion of the total 
temporal variance in the transformed death rates that is explained by just the 
first term in the singular-value decomposition. 

In all the industrialized countries that we have examined, the first singular 
value explains well over 90 per cent of the mortality variation. Therefore we 
have a dominant temporal pattern, and we write 

log m(x,t) = a(x) + b(x) k(t) + E(x,t). 

The single factor k(t) corresponds to the dominant first singular value and 
captures most of the change in mortality. The far smaller variability from 
other singular values is E(x,t). 

The dominant time-factor k(t) displays interesting patterns. Tuljapurkar, Li 
and Boe (2000) analyzed mortality data in this way for the G 7 countries over 
the period from approximately 1955 to 1995. They found that the first singu-
lar value in the decomposition explained over 93 per cent of the variation, 
and that the estimated k(t) in all cases showed a surprisingly steady linear 
decline in k(t). The mortality data for Sweden from 1861 to 1999 constitute 
one of the longest accurate series, and a similar analysis in this case reveals 
two regimes of change in k(t). The estimated k(t) for Sweden is shown in 
Figure 1. There is steady decline from 1861 to about 1910 and after 1920 
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there is again steady decline but at a much faster rate. Note that the approxi-
mately linear long-term declines are accompanied by quite significant short-
term fluctuations. It is possible that we can interpret period-specific fluctua-
tions in terms of particular effects (e.g., changes in particular causes of death) 
but it is difficult to project these forward. For example, the change in the 
pattern in the early 1900s is consistent with our views of the epidemiological 
transition, but we do not know if the future will hold such a qualitative shift. 
Within the 20th century we take the approach of using the dominant linearity 
coupled with superimposed stochastic variation. 

Figure 1 
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Mortality decline at any particular age x is proportional to the signal k(t) but 
its actual magnitude is scaled by the response profile value b(x). Figure 2 
shows the b(x) profiles computed for Swedish data using 50 year spans pre-
ceding the dates 1925, 1945, 1965, and 1985. Note that there is a definite 
time evolution, in which the age schedules rotate (around an age in the range 
40 to 50) and translate so that their weight shifts to later ages as time goes by. 
This shifting corresponds to the known sequence of historical mortality de-
cline starting with declines initially at the youngest ages and then in later ages 
over time. An intriguing possibility is that temporal changes in the b(x) 
schedules may be described by a combination of a scaling and translation – a 
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sort of nonlinear mapping over time. An important matter for future work is 
to explore the time evolution of the b(x), even though it appears (see below) 
that one can make useful forecasts over reasonable time spans of several dec-
ades by relying on a base span of several decades to estimate a relevant b(x). 

Figure 2 
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What accounts for the regular long-term decline in mortality that is observed 
over any period of a few decades? It is reasonable to assume that mortality 
decline in this century has resulted from a sustained application of resources 
and knowledge to public health and mortality reduction. Let us assume, as 
appears to be the case, that societies allocate attention and resources to mor-
tality reduction in proportion to observed levels of mortality at different ages 
(e.g., immunization programs against childhood disease, efforts to reduce 
cardiovascular disease at middle age). Such allocation would produce an 
exponential (proportional) change in mortality, though not necessarily at a 
constant rate over time. Over time, the rate of proportional decline depends 
on a balance between the level of resources focused on mortality reduction, 
and their marginal effectiveness. Historically, the level of resources has in-
creased over time but their marginal effectiveness has decreased over time 
(because, for example, we are confronted with ever more complex causes of 
mortality that require substantial resources or new knowledge). The observa-
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tion of linearly declining k(t) – roughly constant long-run exponential rates of 
decline – implies that increasing level and decreasing effectiveness have bal-
anced each other over long times. It is of course possible that the linear pat-
tern of decline we report has some other basis. For the future, we expect a 
continued increase in resources spent on mortality reduction, and a growing 
complexity of causes of death. The balance between these could certainly 
shift if there were departures from history – for example, if new knowledge is 
discovered and translated into mortality reductions at an unprecedented rate. 
But this century has witnessed an amazing series of discoveries that have 
altered medicine and public health, and there is no compelling reason why the 
future should be qualitatively different. Therefore, I expect a continuation of 
the long-run historical pattern of mortality decline. 

The LC method uses the long-term linear decline in k(t) to forecast mortality. 
A naive forecast based on the long-run trend is not sensible because the short-
term variation will accumulate over time, so it is essential to employ a sto-
chastic forecast. In LC, the stochastic term E(t) is modeled as a stationary 
noise term, and this procedure leads to forecasts for Sweden as shown in 
Figure 3, for life expectancy at birth, e00, and in Figure 4 for life expectancy 
at age 65, e65. In both cases we use a 50-year span of historical data prior to a 
launch date of 1999. The intervals shown are 95 per cent prediction intervals 
for each forecast year. Notice that there are separate forecasts for each sex, as 
well as a combined-sex forecast. The joint analysis of the two sexes in an LC 
framework has not been fully resolved, although Li et al. (2004) suggest one 
method for doing this. 
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Figure 3 

 

Figure 4 
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Some previous comments on the LC method have asserted that it is simply 
equivalent to a linear extrapolation in the log scale of the individual rates at 
each age, but it is not. For one thing, the extrapolations would include ele-
ments of the E(t) terms in each age, and these may be larger at some ages 
than at others. For another, I take the stochastic variation seriously as an inte-
gral part of the forecast, and the realized long run trend can be rather different 
depending on where in the prediction interval one ends up. Without this vari-
ability, the forecasts would not be terribly useful over long horizons. 

To illustrate the robustness of the LC method, Lee and Miller (2001) have 
analyzed the performance of the method using internal validation. A more 
extensive analysis for Sweden echoes their finding that the method is surpris-
ingly robust. To illustrate, I use different base periods to forecast e0 in 1999. 
I first select a starting base year, say 1875, and then a launch year which is 
chosen from the set 1935, 1945, ..., 1995; this gives a total of seven forecasts 
starting in 1875. We expect that a forecast for 1999 using the 1875 to 1935 
base period would be much less accurate than a forecast which uses the 1875 
to 1995 base period. The object of the exercise is to see whether the projec-
tion intervals for e0 in 1999 will decrease in some systematic way as we in-
clude more recent (relative to 1999) history and whether they speak to the 
accuracy of the method. Figure 5 plots the projection intervals obtained in 
this way, using each of three starting years (1875, 1900, or 1925) and the 
seven launch years indicated above, so for each starting year we have an up-
per and lower prediction "fan" for e0 in 1999. The figure shows that as we 
use more recent histories, we close in on the true 1999 value of e0 of 79.4 
years – the 95 per cent prediction interval brackets the true value most of the 
time which is impressive especially when compared with the historical per-
formance of scenario forecasts. From a practical point of view, the prediction 
interval width is under seven years for launch dates from 1960 to 1980 and 
any of the starting base years. This means that we may expect a reasonable 
performance from LC forecasts for as far as 40 years into the future. 
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Figure 5 
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4 From population to pension systems and policy 
For a population forecast we must supplement mortality forecasts with simi-
lar forecasts for fertility and if necessary for immigration. These elements can 
then be combined in the usual cohort-component procedure to generate sto-
chastic population forecasts. Fertility forecasts pose special challenges becau-
se there does not seem to be a strong temporal pattern to fertility dynamics. 
Lee and Tuljapurkar (1994) use time series models for fertility to make sto-
chastic forecasts for the US. Their simple models have been considerably 
extended by Keilman and Pham (2004) who suggest several ways of mode-
ling and constraining the volatility of fertility forecasts. 

How can stochastic forecasts be used in analyzing pension policy? At a pu-
rely demographic level, it is well known that the old-age dependency ratio is 
the key variable that underlies pension costs. As the old-age dependency ratio 
for a population increases, the more retirees-per-worker there are in the popu-
lation, which implies greater stress on a pay-as-you-go pension system which 
relies on today’s workers to pay the benefits of today’s retirees. An interes-
ting insight into the demographic impact of aging on the dependency ratio 
can be created by asking the following question. Suppose that the age at 
which people retire is, e.g., 65. If this “normal retirement age” age cutoff 
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could be changed arbitrarily, how high would we have to raise it in order to 
keep the dependency ratio constant? If we have a population trajectory fore-
cast, then we can simply compute in each year the retirement age, say R(t), at 
which the old-age dependency ratio would be the same ratio as in the launch 
year. When we have stochastic forecasts, there is, in each forecast year t, a set 
of random values R(t); in our analysis we look for the integer value of R(t) 
that comes closest to yielding the target dependency ratio. Figure 6 shows the 
results of computing these stochastic R(t) for the US population. What is 
plotted is actually three percentiles of the distribution of R(t) in each year, the 
median value, and the upper and lower values in a 95 per cent projection 
interval. The plots show some long steps because the dependency ratio distri-
bution changes fairly slowly over time. The smooth line shows the average 
value of R(t) for each forecast year, which is surprisingly close to the median. 
Observe, for example, that there is a 50 per cent chance that the “normal re-
tirement age” would have to be raised to 74 by 2060 in order to keep the de-
pendency ratio constant at its 1997 value. There is only a 2½ per cent chance 
that the “normal retirement age” of 69 years would suffice. Given that current 
US Social Security policy is only intended to raise the “normal retirement 
age” to 67 years, and that even the most draconian proposals would only raise 
it to 69 years, we conclude that changes in the “normal retirement age” are 
very unlikely to hold the dependency ratio constant. Anderson, Tuljapurkar 
and Li (2001) present similar results for the G7 countries. In Tuljapurkar and 
Lee (1999) there are additional examples of how stochastic forecasts can be 
combined with objective functions to analyze fiscal questions. 

Figure 6 
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To go beyond this type of analysis we need a full model of the structure of a 
pension system which may be “fully funded” or “pay-as-you-go” or some 
mixture. Many systems, in order to operate with a margin of security, are 
modified versions of pay-as-you-go systems that include a reserve fund. In 
the United States the OASDI (Old Age Survivors and Disability Insurance, or 
Social Security) Trust Fund, the holdings of the system are federal securities, 
and the "fund" consists of federally-held debt. A fund balance earns interest, 
is subject to withdrawals in the form of benefit payments, and receives depos-
its in the form of worker contributions (usually in the form of tax payments). 
Lee and Tuljapurkar (2000) discuss such models for the US Social Security 
system and also for other fiscal questions. The dynamics of such models pro-
ceed by a straightforward accounting method. Starting with a launch year 
(initial year) balance, we forecast contributions and benefit payments for each 
subsequent year, as well as interest earned. This procedure yields a trajectory 
of fund balance over time. Future contributions depend both on how many 
workers contribute how much to the system. Future benefit payments depend 
on how many beneficiaries receive how much in the future. Our population 
forecasts do not directly yield a breakdown in terms of workers and retirees. 
Therefore, we estimate and forecast per-capita averages by age and sex, for 
both contributions and benefits. We combine these age and sex-specific "pro-
files" with age and sex-specific population forecasts to obtain total inflows 
and outflows for each forecast year. 

Contribution profiles evolve over time according to two factors. First, in-
creases in contributions depend in turn on increases in the real wage. We 
forecast real wage increases stochastically (as described below), and contri-
butions increase in proportion to wages. Second, changes in the labor force 
participation rates also affect contributions; we forecast labor force participa-
tion rates deterministically. Benefit profiles evolve over time in response to 
several factors. In our model of the U.S. Social Security system, we disag-
gregate benefits into disability benefits and retirement benefits. Retirement 
benefit levels reflect past changes in real wages because they depend on a 
worker's lifetime wages. Also, legislated or proposed changes in the Normal 
Retirement Age (the age at which beneficiaries become eligible to collect 100 
per cent of their benefits) will reduce benefits at the old NRA. 

Demographic variables are obviously not the only source of uncertainty fac-
ing fiscal planners; there are sizable economic uncertainties as well. Taxes 
and future benefits usually depend on wage increases (economic productiv-
ity) and funds can accumulate interest or investment returns on tax surpluses. 
Our models combine uncertainty in productivity and investment returns by 
converting productivity to real 1999 dollars, subtracting out increases in the 
CPI. We then model productivity rates and investment returns stochastically. 
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There is substantial correlation between interest rates on government bonds 
and returns to equities, so it is important to model these two variables jointly. 
For our historical interest rate series we use the actual, effective real interest 
rate earned by the trust fund, and for historical stock market returns we use 
the real returns on the overall stock market as a proxy. These two series are 
modeled jointly as a vector auto-regressive process. 

Our stochastic model allows us to simulate many (1000 or more, usually) 
trajectories of all variables and obtain time trajectories of the fund balance 
from which we estimate probabilities and other statistical measures of the 
system's dynamics. This method may be used to explore the probability that 
particular policy outcomes are achieved, for example, that the "fund" stays 
above a zero balance for a specified period of years, or that the level of bor-
rowing by the fund does not exceed some specified threshold. 
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